Skip to main content

Hash-based Digital Signature Schemes

  • Chapter
Book cover Post-Quantum Cryptography

Digital signatures have become a key technology for making the Internet and other IT-infrastructures secure. Digital signatures provide authenticity, integrity, and non-repudiation of data. Digital signatures are widely used in identification and authentication protocols. Therefore, the existence of secure digital signature algorithms is crucial for maintaining IT-security.

The digital signature algorithms that are used in practice today are RSA [31], DSA [11], and ECDSA [15]. They are not quantum immune since their security relies on the difficulty of factoring large composite integers and computing discrete logarithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In Advances in Cryptology - EUROCRYPT'94, LNCS 950, pages 92–111. Springer, 1995.

    Google Scholar 

  2. Berman, P., Karpinski, M., Nekrich, Y.: Optimal Trade-Off for Merkle Tree Traversal. Theoretical Computer Science, volume 372, issue 1, pages 26–36, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  3. Buchmann, J., Coronado, C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS — an improved Merkle signature scheme. In Progress in Cryptology — IN-DOCRYPT 2006, LNCS 4329, pages 349–363. Springer-Verlag, 2006.

    Google Scholar 

  4. Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle signatures with virtually unlimited signature capacity. In Applied Cryptography and Network Security — ACNS 2007, LNCS 4521, pages 31–45. Springer, 2007.

    Google Scholar 

  5. Buchmann, J., Dahmen, E., Schneider, M.: Merkle tree traversal revisited. 2nd International Workshop on Post-Quantum Cryptography — PQCrypto 2008, LNCS 5299, pages 63–77. Springer, 2008.

    Google Scholar 

  6. Boneh, D., Mironov, I., Shoup, V.: A secure signature scheme from bilinear maps. In Topics in Cryptology — CT-RSA 2003, LNCS 2612, pages 98–110. Springer, 2003.

    Google Scholar 

  7. Coppersmith, D., Jakobsson, M.: Almost Optimal Hash Sequence Traversal. Financial Crypto '02. Available at www.markus-jakobsson.com.

  8. Coronado, C.: On the security and the efficiency of the Merkle signature scheme. Cryptology ePrint Archive, Report 2005/192, 2005. http://eprint. iacr.org/.

  9. Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital Signatures out of Second-Preimage Resistant Hash Functions. 2nd International Workshop on Post-Quantum Cryptography — PQCrypto 2008, LNCS 5299, pages 109–123. Springer, 2008.

    Google Scholar 

  10. Dods, C., Smart, N., Stam, M.: Hash based digital signature schemes. In Cryptography and Coding, LNCS 3796, pages 96–115. Springer, 2005.

    Google Scholar 

  11. ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. Advances in Cryptology — CRYPTO '84, LNCS 196, pages 10–18. Springer, 1985.

    Google Scholar 

  12. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. In SIAM Journal on Computing, 17(2), pages 281–308, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  13. Grover, L. K.: A fast quantum mechanical algorithm for database search. Proceedings of the Twenty-Eighth Annual Symposium on the Theory of Computing, pages 212–219, New York, 1996. ACM Press.

    Book  Google Scholar 

  14. Jakobsson, M.: Fractal Hash Sequence Representation and Traversal. ISIT '02, p. 437. Available at www.markus-jakobsson.com.

  15. Johnson, D. and Menezes, A.: The Elliptic Curve Digital Signature Algorithm (ECDSA). Technical Report CORR 99-34, University of Waterloo, 1999. Available at http://www.cacr.math.uwaterloo.ca.

  16. Jakobsson, M., Leighton, T., Micali, S., Szydlo, M.: Fractal Merkle Tree Representation and Traversal. In RSA Cryptographers Track, RSA Security Conference 2003.

    Google Scholar 

  17. Jutla, C., Yung, M.: PayTree: Amortized-Signature for Flexible Micropay-ments. 2nd USENIX Workshop on Electronic Commerce, pp. 213–221, 1996.

    Google Scholar 

  18. Lamport, L.: Constructing digital signatures from a one way function. Technical Report SRI-CSL-98, SRI International Computer Science Laboratory, 1979.

    Google Scholar 

  19. Lipmaa, H.: On Optimal Hash Tree Traversal for Interval Time-Stamping. In Proceedings of Information Security Conference 2002, LNCS 2433, pp. 357–371, Springer, 2002. Available at www.tcs.hut.fi/helger/papers/lip02a/.

  20. Malkin, T., Micciancio, D., Miner, S.: Efficient Generic Forward-Secure Signatures With An Unbounded Number Of Time Periods. Proceedings of Eurocrypt '02, pages 400–417.

    Google Scholar 

  21. Merkle, R.C.: Secrecy, Authentication, and Public Key Systems. UMI Research Press, 1982. Also appears as a Stanford Ph.D. thesis in 1979.

    Google Scholar 

  22. Merkle, R.C.: A Digital Signature Based on a Conventional Encryption Function. Proceedings of Crypto '87, pp. 369–378.

    Google Scholar 

  23. Merkle, R.C.: A certified digital signature. Advances in Cryptology -CRYPTO '89 Proceedings, LNCS 435, pages 218–238, Springer, 1989.

    Google Scholar 

  24. Micali, S.: Efficient Certificate Revocation. In RSA Cryptographers Track, RSA Security Conference 1997, and U.S. Patent No. 5,666,416.

    Google Scholar 

  25. Naor, D., Shenhav, A., Wool, A.: One-time signatures revisited: Have they become practical. Cryptology ePrint Archive, Report 2005/442, 2005. http://eprint.iacr.org/.

  26. Naor, D., Shenhav, A., Wool, A.: One-time signatures revisited: Practical fast signatures using fractal merkle tree traversal. IEEE — 24th Convention of Electrical and Electronics Engineers in Israel, pages 255–259, 2006.

    Google Scholar 

  27. Perrig, A., Canetti, R., Tygar, D., Song, D.: The TESLA Broadcast Authentication Protocol. Cryptobytes, Volume 5, No. 2 (RSA Laboratories, Summer/Fall 2002), pages 2–13. Available at www.rsasecurity.com/rsalabs/cryptobytes/.

  28. Rompel, J.: One-way Functions are Necessary and Sufficient for Secure Signatures. Proceedings of ACM STOC'90, pages 387–394, 1990.

    Google Scholar 

  29. Rivest, R., Shamir, A.: PayWord and MicroMint—Two Simple Micropayment Schemes. CryptoBytes, Volume 2, No. 1 (RSA Laboratories, Spring 1996), pp. 7–11. Available at www.rsasecurity.com/rsalabs/cryptobytes/.

  30. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, implications, and separations for preimage resistance, second-preimage resistance, and collision resistance. In Fast Software Encryption — FSE 2004, LNCS 3017, pages 371–388. Springer, 2004.

    Google Scholar 

  31. Rivest, R. L., Shamir, A., and Adleman, L.: A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  32. FIPS PUB 180-1, Secure Hash Standard, SHA-1. Available at www.itl.nist.gov/fipspubs/fip180-1.htm.

  33. Szydlo, M.: Merkle Tree Traversal in Log Space and Time. Advances in Cryp-tology — EUROCRYPT 2004, LNCS 3027, pages 541–554, Springer, 2004

    Google Scholar 

  34. Szydlo, M.: Merkle Tree Traversal in Log Space and Time. Preprint, available at www.szydlo.com, 2003.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buchmann, J., Dahmen, E., Szydlo, M. (2009). Hash-based Digital Signature Schemes. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds) Post-Quantum Cryptography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88702-7_3

Download citation

Publish with us

Policies and ethics