Skip to main content

Topology Based Selection and Curation of Level Sets

  • Chapter

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

The selection of appropriate level sets for the quantitative visualization of three dimensional imaging or simulation data is a problem that is both fundamental and essential. The selected level set needs to satisfy several topolog-ical and geometric constraints to be useful for subsequent quantitative processing and visualization. For an initial selection of an isosurface, guided by contour tree data structures, we detect the topological features by computing stable and unstable manifolds of the critical points of the distance function induced by the isosurface. We further enhance the description of these features by associating geometric attributes with them. We then rank the attributed features and provide a handle to them for curation of the topological anomalies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajaj, C., Bernardini, F., and Xu, G. Automatic reconstruction of surfaces and scalar fields from 3D scans. In ACM SIGGRAPH (1995), pp. 109–118.

    Google Scholar 

  2. Bajaj, C., and Goswami, S. Automatic fold and structural motif elucidation from 3d EM maps of macromolecules. In ICVGIP 2006 (2006), pp. 264–275.

    Google Scholar 

  3. Bajaj, C., and Yu, Z. Geometric and signal processing of reconstructed 3d maps of molecular complexes: Handbook of computational molecular biology. Computer and Information Sciences Series. Chapman and Hall/CRC press, December 21, 2005.

    Google Scholar 

  4. Bajaj, C. L., Pascucci, V., and Schikore, D. R. The contour spectrum. In Pro-ceedi ng V i sualizati on '97 (Phoenix, AZ, October 1997), R. Yagel and H. Hagen, Eds., IEEE Computer Society & ACM SIGGRAPH, pp. 167–173.

    Google Scholar 

  5. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I., and Bourne, P. The Protein Data Bank. Nucleic Acids Research (2000), 235–242.

    Google Scholar 

  6. Boyell, R., and Ruston, H. Hybrid techniques for real-time radar simulation. In Fall Joint Computer Conference '63 (Las Vegas, NV, 1963), pp. 445–458.

    Google Scholar 

  7. Carlsson, G., Zomorodian, A., Collins, A., and Guibas, L. J. Persistence barcodes for shapes. International Journal of Shape Modeling 11, 2 (2005), 149–187.

    Article  MATH  Google Scholar 

  8. Carr, H., Snoeyink, J., and Axen, U. Computing contour trees in all dimensions. Computational Geometry Theory and Applications 24 (2001), 75–94.

    MathSciNet  Google Scholar 

  9. Carr, H., Snoeyink, J., and van de Panne, M. Simplifying flexible isosurfaces using local geometric measures. IEEE Visualization 2004 (2004).

    Google Scholar 

  10. Chaine, R. A geometric convection approach of 3D reconstruction. In Proc. Eurographics Sympos. on Geometry Processing (2003), pp. 218–229.

    Google Scholar 

  11. Chazal, F., and Lieutier, A. Stability and homotopy of a subset of the medial axis. In Proc. 9th ACM Sympos. Solid Modeling and Applications (2004), pp. 243–248.

    Google Scholar 

  12. Collins, A., Zomorodian, A., Carlsson, G., and Guibas, L. A barcode shape descriptor for curve point cloud data. Computers and Graphics 28 (2004), 881–894.

    Article  Google Scholar 

  13. CVC, UT Austin. Volrover. http://cvcweb.ices.utexas.edu/software/guides.php.

  14. de Berg, M., and van Kreveld, M. Trekking in the alps without freezing or getting tired. Algorithmica 18, 3 (1997), 306–323.

    Article  MATH  MathSciNet  Google Scholar 

  15. de Silva, V., and Carlsson, G. Topological estimation using witness complexes. In Point-Based Graphics '04 (2004), M. Alexa and S. Rusinkiewicz, Eds., pp. 193– 199.

    Google Scholar 

  16. Dey, T. K., Giesen, J., and Goswami, S. Shape segmentation and matching with flow discretization. In Proc. Workshop Algorithms Data Strucutres (WADS 03) (Berlin, Germany, 2003), F. Dehne, J.-R. Sack, and M. Smid, Eds., LNCS 2748, pp. 25–36.

    Google Scholar 

  17. Edelsbrunner, H. Surface reconstruction by wrapping finite point sets in space. In Ricky Pollack and Eli Goodman Festschrift, B. Aronov, S. Basu, J. Pach, and M. Sharir, Eds. Springer-Verlag, 2002, pp. 379–404.

    Google Scholar 

  18. Edelsbrunner, H., Facello, M. A., and Liang, J. On the definition and the construction of pockets in macromolecules. Discrete Apl. Math. 88 (1998), 83–102.

    Article  MATH  MathSciNet  Google Scholar 

  19. Edelsbrunner, H., Letscher, D., and Zomorodian, A. Topological persistence and simplification. Discrete Comput. Geom. 28 (2002), 511–533.

    MATH  MathSciNet  Google Scholar 

  20. El-Sana, J., and Varshney, A. Controlled simplification of genus for polygonal models. In Proceedings of the IEEE Visuali zation '97 (1997), pp. 403–412.

    Google Scholar 

  21. Giesen, J., and John, M. The flow complex: a data structure for geometric modeling. In Proc. 14th ACM-SIAM Sympos. Discrete Algorithms (2003), pp. 285–294.

    Google Scholar 

  22. Goswami, S., Dey, T. K., and Bajaj, C. L. Identifying flat and tubular regions of a shape by unstable manifolds. In Proc. 11th ACM Sympos. Solid and Phys. Modeling (2006), pp. 27–37.

    Google Scholar 

  23. Goswami, S., Gillette, A., and Bajaj, C. Efficient Delaunay mesh generation from sampled scalar function. In Proc. 16th Int. Meshing Roundtable (2007), p. to appear.

    Google Scholar 

  24. Guillemin, V., and Pollack, A. Differential Topology. Prentice-Hall Inc., Engle-wood Cliffs, New Jersey, 1974.

    MATH  Google Scholar 

  25. Guskov, I., and Wood, Z. Topological noise removal. In Graphics Interface (2001), pp. 19–26.

    Google Scholar 

  26. Ju, T., Losasso, F., Schaefer, S., and Warren, J. Dual contouring of hermite data. In Proceedings of SIGGRAPH (2002), pp. 339–346.

    Google Scholar 

  27. Lorensen, W., and Cline, H. Marching cubes: A high resolution 3d surface construction algorithm. In ACM SIGGRAPH '87 (1987), pp. 163–169.

    Google Scholar 

  28. Nooruddin, F., and Turk, G. Simplification and repair of polygonal models using volumetric techniques. Tech. Rep. Research Report 99–37, Georgia Tech., 1999.

    Google Scholar 

  29. Pascucci, V., and Cole-McLaughlin, K. Parallel computation of the topology of level sets. Algorithmica 38 (2003), 249–268.

    Article  MathSciNet  Google Scholar 

  30. Siersma, D. Voronoi diagrams and morse theory of the distance function. In Geometry in Present Day Science, O. E. Barndorff and E. B. V. Jensen, Eds. 1999, pp. 187–208.

    Google Scholar 

  31. van Kreveld, M., van Oostrum, R., Bajaj, C., Pascucci, V., and Schikore, D. Contour trees and small seed sets for isosurface traversal. In Proc. 13th ACM Symposium on Computational Geometry (1997), pp. 212–220.

    Google Scholar 

  32. Wood, Z., Hoppe, H., Desbrun, M., and Schroder, P. Removing excess topology from isosurfaces. ACM Transactions on Graphics 23, 2 (April 2004), 190–208.

    Article  Google Scholar 

  33. Yu, Z., and Bajaj, C. Automatic ultrastructure segmentation of reconstructed cryoem maps of icosahedral viruses. IEEE Transactions on Image Processing: Special Issue on Molecular and Cellular Bioimaging 14, 9 (2005), 1324–37.

    Google Scholar 

  34. Yu, Z., and Bajaj, C. Computational approaches for automatic structural analysis of large bio-molecular complexes. IEEE/ACM Transactions on Computational Biology and Bioinformatics accepted for publication (2007).

    Google Scholar 

  35. Zhang, X., Bajaj, C., Kwon, B., Dolinsky, T., Nielsen, J., and Baker, N. Application of new multiresolution methods for the comparison of biomolec-ular electrostatics properties in the absence of structural similarity. Multiscale Modeling and Simulation 5, 4 (2006), 1196–1213.

    Article  MATH  MathSciNet  Google Scholar 

  36. Zomorodian, A. Computing and Comprehending Topology: Persistence and Hierarchical Morse Complexes. PhD thesis, University of Illinois at Urbana-Champaign, 2001.

    Google Scholar 

  37. Zomorodian, A., and Carlsson, G. Computing persistent homology. Discrete Comput. Geom. 33, 2 (2005), 249–274.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bajaj, C., Gillette, A., Goswami, S. (2009). Topology Based Selection and Curation of Level Sets. In: Hege, HC., Polthier, K., Scheuermann, G. (eds) Topology-Based Methods in Visualization II. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88606-8_4

Download citation

Publish with us

Policies and ethics