Skip to main content

Arc–Continent Collision: The Making of an Orogen

  • Chapter
  • First Online:

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

There is no one model, no paradigm, that uniquely defines arc–continent collision. Natural examples and modelling of arc–continent collision show that there is a large degree of, and variation in, complexity that depend on a number of key first-order parameters and the nature of the main players; the continental margin and the arc–trench complex (the arc–trench complex includes the arc and the subduction zone). Although modelling techniques can be used to gain insights into these, they cannot and do not aim at reproducing the messiness of nature. In natural examples, identifying the nature of the main players involved, such as the age, physical properties, and pre-existing structure of the margin and the arc is just a beginning. Once this is done, parameters such as time, convergence velocity and vector need to be taken into account when determining the tectonic processes that were operative in any one arc–continent collision. In active examples, such as those in the southwest Pacific, some of these first-order parameters can be readily determined, and the nature of the main players easily assessed. Fossil arc–continent collisions, however, have commonly undergone post-collision deformation, erosion, and possibly partial dispersion to be left outcropping in the middle of a forest, with many of the key ingredients missing or hidden. This leaves the geologist to resort to comparison with other natural examples and with models that are mechanically constrained and simplified reproductions of the process to reconstruct and explain what may have been there and, importantly, what processes may have been operating and when. We attempt to show that this is not an easy task that can be put into one simple model. In this chapter we do not present a model for arc–continent collision. Instead, we begin with the main players involved, highlighting the characteristics of each that likely have a major influence on an arc–continent collision. Then, we investigate a range of possible processes that could take place once an intra-oceanic volcanic arc collides with a continental margin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott LD, Silver EA, Galewsky J (1994) Structural evolution of a modern arc-continent collision in Papua New Guinea. Tectonics 13:1007–1034

    Google Scholar 

  • Abbott LD, Silver EA, Anderson RS, Smith R, Ingle JC, Kling SA, Haig D, Small E, Galewsky J, Sliter W (1997) Measurement of tectonic surface uplift rate in a young collisional mountain belt. Nature 385:501–507

    Google Scholar 

  • Abers GA, McCaffrey R (1994) Active arc-continent collision: earthquakes, gravity anomalies, and fault kinematics in the Huon-Finisterre collision zone, Papua New Guinea. Tectonics 13:227–245

    Google Scholar 

  • Afonso JC, Zlotnik S (2011) The subductability of continental lithosphere: the before and after story. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Alsleben H, Wetmore PH, Schmidt KL, Paterson SR, Melis EA (2008) Complex deformation during arc-continent collision: quantifying finite strain in the accreted Alisitos arc, Peninsular Ranges batholith, Baja California. J Struct Geol 30:220–236

    Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1, 1 Arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 pp

    Google Scholar 

  • Arndt NT, Goldstein SL (1989) An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. Tectonophysics 161:201–212

    Google Scholar 

  • Audley-Charles MG (1986) Timor-Tanimbar trough: the foreland basin of the evolving Banda orogen; In: Allen PA, Homewood P (eds) Foreland basins, vol 8. International Association of Sedimentology, Special Publication, pp 91–104

    Google Scholar 

  • Baldwin SL, Monteleone BD, Webb LE, Fitzgerald PG, Grove M, Hill J (2004) Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea. Nature 431:263–267

    Google Scholar 

  • Bauer K, Neben S, Schreckenberger B, Emmermann R, Hinz K, Fecher N, Gohl K, Schulze A, Rumbull RB, Weber K (2000) Deep structure of the Namibia continental margin as derived from integrated geophysial studies. J Geophys Res 105:25829–25853

    Google Scholar 

  • Beane RJ, Liou JG, Coleman RG, Leech ML (1995) Petrology and retrograde P-T path for eclogites of the Maksyutov Complex, southern Urals Mountains, Russia. The Island Arc 4:254–266

    Google Scholar 

  • Boutelier D, Chemenda A (2011) Physical modeling of arc-continent collision: A review of 2-D, 3-D, purely mechanical and thermo-mechanical experimental models. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Boutelier D, Chemenda A, Burg J-P (2003) Subduction versus accretion of intra-oceanic volcanic arcs: insight from thermo-mechanical analogue experiments. Earth Planet Sci Lett 212:31–45

    Google Scholar 

  • Boutelier D, Chemenda A, Jorand C (2004) Continental subduction and exhumation of high-pressure rocks: insights from thermo-mechanical laboratory modeling. Earth Planet Sci Lett 222:209–216

    Google Scholar 

  • Brown D (2009) The growth and destruction of the continental crust during arc-continent collision in the southern Urals. Tectonophysics 479:185–196

    Google Scholar 

  • Brown D, Spadea P (1999) Processes of forearc and accretionary complex formation during arc-continent collision in the Southern Ural Mountains. Geology 27:649–652

    Google Scholar 

  • Brown D, Juhlin C, Alvarez-Marron J, Perez-Estaun A, Oslianski A (1998) Crustal-scale structure and evolution of an arc-continent collision zone in the southern Urals, Russia. Tectonics 17:158–171

    Google Scholar 

  • Brown D, Hetzel R, Scarrow JH (2000) Tracking arc-continent collision subduction zone processes from high-pressure rocks in the southern Urals. J Geol Soc 157:901–904

    Google Scholar 

  • Brown D, Alvarez-Marron J, Perez-Estaun A, Puchkov V, Ayarza P, Gorozhanina Y (2001) Structure and evolution of the Magnitogorsk forearc basin: identifying upper crustal processes during arc-continent collision in the Southern Urals. Tectonics 20:364–375

    Google Scholar 

  • Brown D, Spadea P, Puchkov V, Alvarez-Marron J, Herrington R, Willner AP, Hetzel R, Gorozhanina Y (2006) Arc-continent collision in the Southern Urals. Earth Sci Rev 79:261–287

    Google Scholar 

  • Brown D, Herrington R, Alvarev-Marron J (2011) Processes of arc-continet collision in the Uralides. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Burg JP (2011) The Asia-Kohistan-India collision. Review and discussion. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Byrne T, Chan Y-C, Rau R-J, Lu C-Y, Lee Y-H, Wang Y-J (2011) The arc-continent collision in Taiwan. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Calvert AJ (2011) The seismic structure of island arc crust. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Calvert AJ, Sawyer EW, Davis WJ, Ludden JH (1995) Archean subduction inferred from seismic images of a mantle suture in the Superior Province. Nature 375:670–674

    Google Scholar 

  • Calvert AJ, Klemperer SL, Takahashi N, Keer B (2008) Three-dimensional crustal structure of the Mariana island arc from seismic tomography. J Geophys Res 113 doi: 10.1029/2007JB004939

  • Casey JF, Dewey JF (1984) Initiation of subduction zones along transform and accreting plate boundaries, triple junction evolution and spreading centres – implications for ophiolite geology and obduction. In: Gass IG, Lippard SJ, Shelton AW (eds) Ophiolites and oceanic lithosphere, vol 13. Geological Society, London, pp 269–290

    Google Scholar 

  • Chemenda A, Matte P, Sokolov V (1997a) A model of Palaeozoic obduction and exhumation of high-pressure/low-temperature rocks in the southern Urals. Tectonophysics 276:217–227

    Google Scholar 

  • Chemenda A, Yang R, Hsieh C, Groholsky A (1997b) Evolutionary model for the Taiwan collision based on physical modelling. Tectonophysics 274:253–274

    Google Scholar 

  • Chemenda A, Lallemand S, Bokun A (2000) Strain partitioning and intraplate friction in oblique subduction zones: constraints provided by experimental modeling. J Geophys Res 105:5567–5582

    Google Scholar 

  • Chemenda A, Hurpin D, Tang J-C, Stefan J-F, Buffet G (2001) Impact of arc-continent collision on the conditions of burial and exhumation of UHP/LT rocks: experimental and numerical modeling. Tectonophysics 342:137–161

    Google Scholar 

  • Chopin C (2003) Ultrahigh-pressure metamorphism: tracing continental crust into the mantle. Earth Planet Sci Lett 212:1–14

    Google Scholar 

  • Clift P, Vannucchi P (2004)Controls on tectonic accretion versus erosion in subduction zones; implications for the origin and recycling of the continental crust. Rev Geophys 42, doi: 8755-1209/04/2003RG000127

  • Clift PD, Schouten H, Draut AE (2003) A general model of arc-continent collision and subduction polarity reversal from Taiwan and the Irish Caledonides. In: Larter RD, Leat PT (eds) Intra-oceanic subduction systems; tectonic and magmatic processes, vol 219. Geological Society of London, special publication, London, pp 81–98

    Google Scholar 

  • Clift P, Vannucchi P, Phipps Morgan J (2009a) Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust. Earth Sci Rev 97:80–104

    Google Scholar 

  • Clift P, Schouten H, Vannucchi P (2009b) Arc-continent collisions, sediment recycling and the maintenance of the continental crust. In: Cawood P, Kroener A (eds) Accretionary orogens in space and time, vol 318. Geological Society of London, Special Publication, London, pp 75–103

    Google Scholar 

  • Cook FA (2002) Fine structure of the continental Moho. Geol Soc Am Bull 114:64–79

    Google Scholar 

  • Cook F (2011) Multiple arc development in the Paleoproterozoic Wopmay Orogen, northwest Canada. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Cook FA, van der Velden AJ, Hall KW, Roberts BJ (1999) Frozen subduction in Canada’s Northwest Territories: lithoprobe deep lithosphereic reflection rofiling of the western Canadian Shield. Tectonics 18:1–24

    Google Scholar 

  • De Smet MEM, Fortuin AR, Troelstra SR, Van Mrale LJ, Karmini M, Tjokosaproetro S, Hadiwasastra S (1990) Detection of collision-related vertical movements in the Outer Banda Arc (Timor, Indonesia), using micropaleontological data. J Southeast Asian Earth Sci 4:337–356

    Google Scholar 

  • DeBari SM, Greene A, Johnson M (2011) Vertical stratification of composition, density, and inferred magmatic processes in exposed arc crustal sections. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Dewey JF (2003) Ophiolites and lost oceans, vol 373, Geological Society of America, Special Paper., pp 153–158

    Google Scholar 

  • Dewey JF (2005) Orogeny can be very short. Proc Am Acad Sci 102:15286–15293

    Google Scholar 

  • Dewey JF, Casey JF (2011) The origin of obducted large-slab ophiolite complexes. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Dewey JF, Mange M (1999) Petrography of Ordovician and Silurian sediments in the western Irish Caledonides; tracers of a short-lived Ordovician arc-continent collision orogeny and the evolution of the Laurentian Appalachian-Caledonian margin. In: MacNiocaill C, Ryan PD (eds) Continental tectonics, vol 164. Geological Society of London, Special Publication, London, pp 55–108

    Google Scholar 

  • Dobrzhinetskaya LF, Green HW (2007) Experimental studies of mineralogical assemblages of metasedimentary rocks at Earth’s mantle transition zone conditions. Journal of Metamorphic Geology 25:83–96

    Google Scholar 

  • Draut A, Clift PD (2001) Geochemical evolution of arc magmatism during arc-continent collision, South Mayo, Ireland. Geology 29:543–546

    Google Scholar 

  • Draut A, Clift PD, Hannigan RE, Layne G, Shimizu N (2002) A model for continental crust genesis by arc accretion: rare earth element evidence from the Irish Caledonides. Earth Planet Sci Lett 203:861–877

    Google Scholar 

  • Draut A, Clift PD, Amato JM, Blusztajn J, Schouten H (2009) Arc-continent collision and the formation of continental crust: a new geochemical and isotopic record from the Ordovician Tyrone Complex, Ireland. J Geol Soc 166:485–500

    Google Scholar 

  • Duretz T, Gerya TV, May DA (2010) Numerical modelling of spontaneous slab breakoff and subsequent topographic response. Tectonophysics doi: 10.1016/j.tecto.2010.05.024

  • Edwards RA, Whitmarsh RB, Scrutton RA (1997) The crustal structure across the transform continental margin off Ghana, eastern equatorial Atlantic. J Geophys Res 102:747–772

    Google Scholar 

  • Elburg MA, Foden JD, van Bergen MJ, Zulkarnain I (2005) Australia and Indonesia in collision: geochemical sources of magmatism. J Volcanol Geoth Res 140:25–47

    Google Scholar 

  • Ernst WG, Liou JG, Hacker BR (1994) Petrotectonic significance of high- and ultrahigh-pressure metamorphic belts: inferences for subduction-zone histories. Int Geol Rev 36:213–237

    Google Scholar 

  • Escuder-Viruete J, Pérez-Estaún A (2006) Subduction-related P-T path for eclogites and garnet glaucophanites from the Samaná Peninsula basement complex, northern Hispaniola. Int J Earth Sci 95:995–1017

    Google Scholar 

  • Fernàndez M, Afonso JC, Ranalli G (2010) The deep lithospheric structure of the Namibian volvanic margin. Tectonophysics 481:68–81

    Google Scholar 

  • Fuller CW, Willett SD, Fisher D, Lu CY (2006) A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry. Tectonophysics 425:1–24

    Google Scholar 

  • Funck T, Jackson HR, Louden KE, Dehler SA, Wu Y (2004) Crustal structure of the northern Nova Scotia rifted continental margin (eastern Canada). J Geophys Res 109 doi: 10.1029/2004JB003008

  • Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC, Wang QH (2004) Recycling lower continental crust in the North china craton. Nature 432:892–897

    Google Scholar 

  • Gao S, Rudnick RL, Xu W-L, Yuan H-L, Liu Y-S, Walker RJ, Puchtel IS, Liu X, Huang H, Wang X-R, Yang J (2008) Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet Sci Lett 270:41–53

    Google Scholar 

  • García-Casco A, Torres-Roldán RL, Iturralde-Vinent M, Millán G, Nuñuez Cambra K, Lázaro Calisalvo C, Rodríguez Vega A (2006) High pressure metamorphism of ophiolites in Cuba. Geologica Acta 4:63–88

    Google Scholar 

  • Gerya TV (2011) Intra-oceanic subduction zones. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Gourley JR, Byrne T, Chan Y-C, Wu F, Rau RJ (2007) Fault geometries illuminated from seismicity in central Taiwan: implications for crustal scale structural boundaries in the northern Centrl Range. Tectonophysics 445:168–185

    Google Scholar 

  • Hall R (1996) Reconstructing Cenozoic SE Asia. In: Hall R, Blundell D (eds) Tectonic evolution of Southeast Asia, vol 106. Geological Society of London, Special Publication, London, pp 153–184

    Google Scholar 

  • Hall R (1998) The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. In: Hall R, Holloway JD (eds) Biogeography and geological evolution of SE Asia. Backbuys, Leiden, pp 99–131

    Google Scholar 

  • Hall R (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions and animations. J Asian Earth Sci 20:353–434

    Google Scholar 

  • Harris R (2006) Rise and fall of the eastern Great Indonesian arc recorded by the assembly, dispersion and accretion of the Banda Terran, Timor. Gondwana Res 10:207–231

    Google Scholar 

  • Harris R (2011) The nature of the Banda arc-continent collision in the Timor region. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Harris R, Kaiser J, Hurford AJ, Carter A (2000) Thermal history of Australian passive margin cover sequences accreted to Timor during Late Neogene arc-continent collision, Indonesia. J Asian Earth Sci 18:47–69

    Google Scholar 

  • Hawkesworth CJ, Kemp AIS (2006) Evolution of the continental crust. Nature 443:811–817

    Google Scholar 

  • Herrington RJ, Brown D (2011) The generation and preservation of mineral deposits in arc-continent collision environments. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Herrington RJ, Maslennikov VV, Spiro B, Zaykov VV, Little CTS (1998) Ancient vent chimney structures in the Silurian massive sulphides of the Urals. In: Mills RA, Harrison K (eds) Modern ocean floor processes and the geological record, vol 148. Geological Society of London, Special Publications, London, pp 241–257

    Google Scholar 

  • Herrington RJ, Armstrong RN, Zaykov VV, Maslennikov VV, Tessalina SG, Orgeval J-J, Taylor RNA, (2002) Massive sulfide deposits in the South Urals: geological setting within the framework of the Uralide Orogen. In: Brown D, Juhlin C, Puchkov V (eds) Mountain building in the Uralides: pangea to present, vol 132. American Geophysical Union, Geophysical Monograph, pp 155–182

    Google Scholar 

  • Herrington R, Zaykov V, Maslennikov V, Brown D, Puchkov V (2005) Mineral deposits of the Urals and links to geodynamic evolution. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology. 100 Anniversary Volume, pp 1069–1095

    Google Scholar 

  • Herrington RJ, Scotney PM, Roberts S, Boyce AJ, Harrison D (2011) Temporal association of arrested subduction, progressive magma contamination in arc volcanism and formation of gold-rich massive sulphide deposits on Wetar Island (Banda Arc). Gondwana Res 19(3):583–593

    Google Scholar 

  • Hetzel R (1999) Geology and geodynamic evolution of the high-P/low-T Maksyutov Complex, Southern Urals, Russia. Geol Rundsch 87:577–588

    Google Scholar 

  • Hetzel R, Echtler HP, Seifert W, Schulte BA, Ivanov KS (1998) Subduction- and exhumation-related fabrics in the Paleozoic high-pressure–low-temperature Maksyutov Complex, Antingan area, Southern Urals, Russia. Geol Soc Am Bull 110:916–930

    Google Scholar 

  • Hill K (1991) Structure of the Papuan fold belt, Papua new Guinea. Am Assoc Petrol Geol 75:857–872

    Google Scholar 

  • Holbrook WS, Lizarralde D, McGreary S, Bangs N, Diebold J (1999) Structure and composition of the Aleutian island arc and implications for continental crustal growth. Geology 27:31–34

    Google Scholar 

  • Hsieh ML, Rau RJ (2009) Late Holocene coseismic uplift on the Hua-tung coast, eastern Taiwan: evidence from mass mortality of intertidal organisms. Tectonophysics 474:595–609

    Google Scholar 

  • Huang C-Y, Wu W-Y, Chang C-P, Tsao S, Yuan PB, Lin CW, Kuan-Yuan X (1997) Tectonic evolution of an accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics 281:31–51

    Google Scholar 

  • Huang C-Y, Yuan PB, Lin C-W, Wang TK, Chang C-P (2000) Geodynamic processes of Taiwan arc-continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics 325:1–22

    Google Scholar 

  • Huang C-Y, Yuan PB, Tsao S-J (2006) Temporal and spatial records of active arc-continent collision in Taiwan: a synthesis. Geol Soc Am Bull 118:274–288

    Google Scholar 

  • Hynes A, Snyder DB (1995) Deep-crustal mineral assemblages and potential for crustal rocks below the Moho in the Scottish Caledonides. Geophys J Int 123:323–339

    Google Scholar 

  • Iturralde-Vinent MA, Díaz-Otero A, van Hinsbergen DJJ (2008) Peleogene foredeep basin deposits of north-central Cuba: a record of arc-continent collision between the Caribbean and North American plates. Int Geol Rev 50:868–884

    Google Scholar 

  • Jahn BM, Martineau F, Peucat JJ, Cornichet J (1986) Geochronology of the Tananao schist complex, Taiwan, and its regional tectonic significance. Tectonophysics 125:103–124

    Google Scholar 

  • Kay RW, Mahlburg-Kay S (1991) Creation and destruction of the lower continental crust. Geol Rundsch 80:259–278

    Google Scholar 

  • Keen CE, Dehler SA (1997) Extensional styles and gravity anomalies at rifted continental margins: some North Atlantic examples. Tectonics 16:744–754

    Google Scholar 

  • Kerrich R, Goldfarb R, Richards J (2005) Metallogenic provinces in an evolving geodynamic framework. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology. 100 Anniversary Volume. pp 1097–1136

    Google Scholar 

  • Kodaira S, Sato T, Takahashi N, Ito N, Tamura Y, Tatsumi Y, Kaneda Y (2007) Seismological evidences for variation of continental growth along the Izu intra-oceanic arc and its implication for arc volcanism. J Geophys Res 112 doi: 10.1029/2006JB004593

  • Konstantinovskaya E (2011) Early Eocene arc-continent collision in Kamchatka, Russia: structural evolution and geodynamic model. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Lallemand S, Liu C-S, Dominguez S, Schnurle P, Malavieille J, The ACT Scientific Crew (1999) Trench-parallel stretching and folding of forearc basin and lateral migration of the accretionary wedge in the southern Ryukyu: a case of strain partition caused by oblique convergence. Tectonics 18:231–247

    Google Scholar 

  • Lázaro C, García-Casco A, Rojas Agramonte Y, Kröner A, Newbauer F, Iturralde-Vinent M (2009) Fifty-five-million-year history of oceanic subduction and exhumation at the northern edge of the Caribbean plate (Sierra del Convento mélange, Cuba). J Metamorph Geol 27:19–40

    Google Scholar 

  • Leat PT, Larter RD (2003) Intra-oceanic subduction systems. In: Larter RD, Leat PT (eds) Intra-oceanic subduction systems: tectonic and magmatic processes, vol 219. Geological Society of London, Special Publication, London, pp 1–17

    Google Scholar 

  • Liou JG, Hacker BR, Zhang RY (2000a) Into the forbidden zone. Science 287:1215–1216

    Google Scholar 

  • Lissenberg CJ, McNicoll VJ, van Staal CR (2006) The origin of mafic-ultramafic bodies within the northern Dashwoods Subzone, Newfoundland Appalachians. Atl Geol 42:1–12

    Google Scholar 

  • Little CTS, Herrington RJ, Maslennikov VV, Morris NJ, Zaykov VV (1997) Silurian hydrothermal-vent community from the southern Urals, Russia. Nature 385:146–148

    Google Scholar 

  • Malavieille J, Trullenque G (2009) Consequences of continental subduction on forearc basin and accretionary wedge deformation in SE Taiwan: insights from analogue modeling. Tectonophysics 466:377–394

    Google Scholar 

  • Malavieille J, Lallemand SE, Dominguez S, Deschamps A, Lu CY, Liu CS, Schnürle P, ACT Scientific Crew (2002) Arc-continent collision in Taiwan. New marine observations and tectonic evolution. In: Bryne TB, Liu CS (eds) Geology and geophysics of an arc-continent collision, Taiwan, vol 358, Geological Society of America, Special Paper., pp 187–211

    Google Scholar 

  • Mann P, Draper G, Lewis JF (1991) Geologic and tectonic development of the North America-Caribbean plate boundary in Hispañola, vol 262. Geological Society of America Special Paper. 401 pp

    Google Scholar 

  • Massone H-J, Willner AP, Gerya T (2007) Densities of metapelitic rocks at high to ultrahigh pressure conditions: what are the geodynamic consequences. Earth Planet Sci Lett 256:12–27

    Google Scholar 

  • McIntosh K, Nakamura Y, Wang TK, Shih RC, Chen A, Liu CS (2005) Crustal-scale seismic profiles across Taiwan and the western Philippine Sea. Tectonophysics 401:23–54

    Google Scholar 

  • Ranalli G, Pellegrini R, D’Offizi S (2000) Time dependence of negative bouyancy and the subduction of continental lithosphere. J Geodyn 30:539–555

    Google Scholar 

  • Reston TJ (2009) The structure, evolution and symmetry of the magma-poor rifted margins of the North and Central Atlantic: a synthesis. Tectonophysics 468:6–27

    Google Scholar 

  • Reston T, Manatschal G (2011) Rifted margins: building blocks of later collision. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Roosmawati N, Harris R (2009) Surface uplift history of the incipient Banda arc-continent collision: geology and synorogenic foraminifera of Rote and Savu islands, Indonesia. Tectonophysics 479:95–110

    Google Scholar 

  • Rudnick RL (1995) Making continental crust. Nature 378:571–578

    Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Google Scholar 

  • Ryan PD (2001) The role of deep basement during continent-continent collision: a review. In: Miller JA, Holdsworth RE, Buik IS, Hand M (eds) Continental reactivation and reworking, vol 184. Geological Society of London, Special Publication, London, pp 39–55

    Google Scholar 

  • Ryan PD (2008) Preservation of fore-arc basins during island arc-continent collision; some insights from the Ordovician of western Ireland. In: Draut AE, Clift PD, Scholl DW (eds) Sedimentation in arc collision settings, vol 436, Geological Society of America, Special Paper., pp 1–9

    Google Scholar 

  • Ryan PD, Dewey JF (2011) Arc-continent collision in the Ordovician of western Ireland: Stratigraphic, structural, and metamorphic evolution. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Sayers J, Symonds PA, Direen NG, Bernardel G (2001) Nature of the continent-ocean transition on the non-volcanic rifted margin of the central Great Australian Bight. In: Wilson RCL, Whitmarsh RB, Taylor B, Froitzheim N (eds) Non-volcanic rifting of continental margins: a comparison of evidence from land and sea, vol 187. Geological Society of London, Special Publication, London, pp 51–76

    Google Scholar 

  • Shreve RL, Cloos M (1986) Dynamics of sediment subduction, mélange formation, and prism accretion. J Geophys Res 91:10229–10245

    Google Scholar 

  • Shyu JBH, Sieh K, Avouac JP, Chen WS, Chen YG (2006) Millennial slip rate of the Longitudinal Valley fault from river terraces: implications for convergence across the active suture of eastern Taiwan. J Geophys Res 111 doi: 10.1029/2005JB003971

  • Silver EA, Reed D, McCaffrey R, Joyodiwiryo Y (1983) Back arc thrusting in the eastern Sunda Arc, Indonesia: a consequence of arc-continent collision. J Geophys Res 88:7429–7448

    Google Scholar 

  • Snyder DB, Prasetyo H, Blundell DJ, Pigram CJ, Barber AJ, Richardson A, Tjokosaproetro S (1996) A dual doubly vergent orogen in the Banda Arc continent-arc collision zone as observed on deep seismic reflection profiles. Tectonics 15:34–53

    Google Scholar 

  • Spadea P, Kabanova LY, Scarrow JH (1998) Petrology, geochemistry and geodynamic significance of Mid-Devonian boninitic rocks from the Baimak-Buribai area (Magnitogorsk Zone, southern Urals). Ofioliti 23:17–36

    Google Scholar 

  • Spadea P, D’Antonio M, Kosarev A, Gorozhanina Y, Brown D (2002) Arc-continent collision in the Southern Urals: petrogenetic aspects of the forearc complex. In: Brown D, Brown D, Juhlin C, Puchkov V (eds) Mountain building in the uralides: pangea to present, American Geophysical Union, Geophysical Monograph., pp 101–134

    Google Scholar 

  • Standley CE, Harris R (2009) Tectonic evolution of forearc nappes of the active Banda arc-continent collision: origin, age, metamorphic history and structure of the Lolotoi Complex, East Timor. Tectonophysics 479:66–94

    Google Scholar 

  • Stern RJ (2002) Subduction zones. Rev Geophys 40 doi: 10.1029/2001RG000108

  • Stern RJ (2004) Subduction initiation: spontaneous and induced. Earth Planet Sci Lett 226:275–292

    Google Scholar 

  • Stern RJ, Smoot NC (1998) A bathymetric overview of the Mariana forearc. Island Arc 7:525–540

    Google Scholar 

  • Suppe J (1984) Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan, vol 6. Memoir of the Geological Society of China. pp 21–33

    Google Scholar 

  • Takahashi N, Kodaira S, Klemperer S et al (2007) Crustal structure and evolution of the Mariana intra-oceanic island arc. Geology 35:203–206

    Google Scholar 

  • Tatsumi Y, Shukuno H, Tani K, takahashi N, Kodaira S, Kogiso T (2008) Structure and growth of the Izu-Bonin-Mariana arc crust: 2. Role of crust-mantle transformation and the transparent Moho in arc crust. J Geophys Res 13 doi: 10.1029/2007JB005121

  • van den Beukel J (1992) Some thermomechanical aspects of the subduction of continental lithosphere. Tectonics 11:316–329

    Google Scholar 

  • Van der Velden AJ, Cook FA (2005) Relict subduction zones in Canada. J Geophys Res 110 doi: 10.1029/2004JB003333

  • van Staal CR, Whalen JB, Valverde-Vaquero P, Zagorevski A, Rogers N (2009) Pre-Carboniferous, episodic accretion-related orogenesis along the Laurentian margin of the northern Appalachians. In: Murphy JB, Keppie JP, Hynes AJ (eds) Ancient orogens and modern analogues, vol 327. Geological Society of London, Special Publication, London, pp 271–316

    Google Scholar 

  • Von Huene R, Scholl DW (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys 29:279–316

    Google Scholar 

  • Wang Q, Wyman DA, Xu J, Dong Y, Vasconcelos PM, Pearson N, Wan Y, Dong H, Li C, Yu Y, Zhu T, Feng X, Zhang Q, Zi F, Chu Z (2006a) Eocene melting of subducted continental crust and early uplifting of central Tibet: evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites, and rhyolites. Earth Planet Sci Lett 272:158–171

    Google Scholar 

  • Wang Z, Zhao D, Wang J, Kao H (2006). Tomographic evidence for the Eurasian lithosphere beneath Taiwan. Geophys Res Lett 33 doi: 10.1029/2006GL027166

  • Warner MR, Morgan J, Barton P, Morgan P, Price C, Jones K (1996) Seismic reflections from the mantle represent relict subduction zones within the continental lithosphere. Geology 24:39–42

    Google Scholar 

  • Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Transactions, AGU 72:441

    Google Scholar 

  • White DJ, Musacchio G, Helmstaedt HH, Harrap RM, Thurston PC, van der Velden A, Hall K (2003) Images of a lower-crustal oceanic slab: direct evidence for tectonic accretion in the Archean western Superior province. Geology 31:997–1000

    Google Scholar 

  • Willner AP, Ermolaeva T, Gorozhanina YN, Puchkov VN, Arzhavitina M, Pazukhin VN, Kramm U, Walter R (2002) Surface signals of an arc-continent collision: the detritus of the Upper Devonian Zilair Formation in the Southern Urals, Russia. In: Brown D, Juhlin C, Puchkov V (eds) Mountain building in the uralides: pangea to present, vol 132, American Geophysical Union, Geophysical Monograph., pp 183–210

    Google Scholar 

  • Wu FT, Rau RJ, Salzberg D (1997) Taiwan orogeny:thin-skinned or lithospheric collision? Tectonophysics 274:191–220

    Google Scholar 

  • Wu F, Chang C-S, Wu YM (2004) Precisely relocated hypocentres, focal mechamisms and active orogeny in Central Taiwan. In: Malpas J, Fletcher CJN, Ali JR, Aitchison JC (eds) Aspects of the tectonic evolution of China, vol 226. Geological Society of London, Special Publication, London, pp 333–354

    Google Scholar 

  • Wu YH, Chang CH, Zhao L, Shyu BH, Chen YG, Sich K, Avouac JP (2007) Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations. J Geophys Res 112 doi: 10.1029/2007JB004983

  • Wu YM, Zhao L, Chang CH, Hsiao NC, Chen YG, Hsu SK (2009) Relocation of the 2006 Pingtung Earthquake sequence and seismotectonics in Southern Taiwan. Tectonophysics 479:19–27

    Google Scholar 

  • Ye K, Cong B, Ye D (2000) The possible subduction of continental material to depths greater than 200 km. Nature 407:734–736

    Google Scholar 

  • Zagorevski A, van Staal CR (2011) The record of Ordovician arc-arc and arc-continent collisions in the Canadian Appalachians during the closure of Iapetus. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Zagorevski A, Lissenberg CJ, van Staal CR (2009) Dynamics of accretion of arc and backarc crust to continental margins: inferences from the Anniopsquotch accretionary tract, Newfoundland Appalachians. Tectonophysics 479:150–164

    Google Scholar 

  • Zaykov VV, Maslennikov VV, Zaykova EV, Herrington RJ (1996) Hydrothermal activity and segmentation in the Magnitogotsk-west Mugodjarian zone on the margins of the Urals palaeo-ocean. In: MacLeod CJ, Tyler PA, Walker CL (eds) Tectonic, magmatic, hydrothermal and biological segmentation of mid-ocean ridges, vol 118. Geological Society of London, Special Publication, London, pp 199–210

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Brown .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brown, D. et al. (2011). Arc–Continent Collision: The Making of an Orogen. In: Arc-Continent Collision. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88558-0_17

Download citation

Publish with us

Policies and ethics