Skip to main content

Hyperthermie

  • Chapter
  • First Online:
Book cover Strahlentherapie
  • 8899 Accesses

Zusammenfassung

Die physiologische Körpertemperatur des Menschen ist ein gut regulierter Parameter und wird in einer eng gefassten Spannbreite von 37,0–37,5°C reguliert. Bei dieser Körpertemperatur arbeiten die zellulären und physiologischen Prozesse für den Menschen am effektivsten. In bestimmten Stresssituationen wie z. B. bei Infektionen reagiert der menschliche Körper ganz natürlich mit Fieber, einer Erhöhung der Körpertemperatur, um seine Abwehrmechanismen zu verbessern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Armour EP, McEachern D, Wang Z, Corry PM, Martinez A (1993) Sensitivity of human cells to mild hyperthermia. Cancer Res 53:2740–2744

    PubMed  CAS  Google Scholar 

  • Armour EP, Wang ZH, Corry PM, Martinez A (1991) Sensitization of rat 9L gliosarcoma cells to low dose rate irradiation by long duration 41 degrees C hyperthermia. Cancer Res 51:3088–3095

    PubMed  CAS  Google Scholar 

  • Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschr Phys Chem 4:226–248

    Google Scholar 

  • Bauer KD, Henle KJ (1979) Arrhenius analysis of heat survival curves from normal and thermotolerant CHO cells. Radiat Res 78:251–263

    PubMed  CAS  Google Scholar 

  • Bicher HI, Wolfstein RS, Lewinsky BS, Frey HS, Fingerhut AG (1986) Microwave hyperthermia as an adjunct to radiation therapy: summary experience of 256 multifraction treatment cases. Int J Radiat Oncol Biol Phys 12:1667–1671

    PubMed  CAS  Google Scholar 

  • Brizel DM, Scully SP, Harrelson JM et al. (1996) Radiation therapy and hyperthermia improve the oxygenation of human soft tissue sarcomas. Cancer Res 56:5347–5350

    PubMed  CAS  Google Scholar 

  • Burgman P, Nussensweig A, Li G (1995) Thermotolerance. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiotherapy and thermochemotherapy. Springer, Berlin Heidelberg New York Tokio, pp 75–84

    Google Scholar 

  • Carter DL, MacFall JR, Clegg ST et al. (1998) Magnetic resonance thermometry during hyperthermia for human highgrade sarcoma. Int J Radiat Oncol Biol Phys 40:815–822

    PubMed  CAS  Google Scholar 

  • Cividalli A, Cruciani G, Livdi E, Pasqualetti P, Tirindelli DD (1999) Hyperthermia enhances the response of paclitaxel and radiation in a mouse adenocarcinoma. Int J Radiat Oncol Biol Phys 44:407–412

    PubMed  CAS  Google Scholar 

  • Da Silva VF, Feeley M, Raaphorst GP (1991) Hyperthermic potentiation of BCNU toxicity in BCNU-resistant human glioma cells. J Neurooncol 11:37–41

    PubMed  CAS  Google Scholar 

  • Dahl O (1995) Interaction of heat and drugs in vitro and in vivo. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiotherapy and thermochemotherapy. Springer, Berlin Heidelberg New York Tokio, pp 103–155

    Google Scholar 

  • Dewey WC, Hopwood LE, Sapareto SA, Gerweck LE (1977) Cellular responses to combinations of hyperthermia and radiation. Radiology 123:463–474

    PubMed  CAS  Google Scholar 

  • Dewey WC (1994) Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia 10:457–483

    PubMed  CAS  Google Scholar 

  • Dewhirst MW (1986) Effects of heating rate of normal and tumor microcirculatory function. In: Diller K, Roemer RB (eds) Heat and mass transfer in the microcirculation of thermally significant vessels. ASME, Anaheim, CA, pp 75–80

    Google Scholar 

  • Dewhirst MWE, Samulski TV (1988) Hyperthermia in the treatment of cancer. In: Angel M, Gottmann S, Khambatta HJ (eds) Current Concepts. Upjohn, Kalamazoo, Michigan

    Google Scholar 

  • Dinges S, Harder C, Wurm R et al. (1998) Combined treatment of inoperable carcinomas of the uterine cervix with radiotherapy and regional hyperthermia. Results of a phase II trial. Strahlenther Onkol 174:517–521

    PubMed  CAS  Google Scholar 

  • Emami B, Perez CA, Leybovich L, Straube W, Vongerichten D (1987) Interstitial thermoradiotherapy in treatment of malignant tumours. Int J Hyperthermia 3:107–118

    PubMed  CAS  Google Scholar 

  • Engin K, Leeper DB, Thistlethwaite AJ, Tupchong L, McFarlane JD (1994) Tumor extracellular pH as a prognostic factor in thermoradiotherapy. Int J Radiat Oncol Biol Phys 29:125–132

    PubMed  CAS  Google Scholar 

  • Feldmann HJ, Molls M, Hoederath A, Krumpelmann S, Sack H (1992) Blood flow and steady state temperatures in deepseated tumors and normal tissues. Int J Radiat Oncol Biol Phys 23:1003–1008

    PubMed  CAS  Google Scholar 

  • Feldmann HJ, Sack H (1993) Strahlentherapie in Kombination mit regionaler Hyperthermie bei lokal fortgeschrittenen Beckentumoren. Med Tech 4:9–15

    Google Scholar 

  • Franconi C (1987) Hyperthermia heating technology and devices. In: Field SB, Franconi C (eds) Physics and technology of hyperthermia. Nijhoff, Dordrecht, pp 80–122

    Google Scholar 

  • Gerweck LE (1977) Modification of cell lethality at elevated temperatures. The pH effect. Radiat Res 70:224–235

    PubMed  CAS  Google Scholar 

  • Gerweck LE, Richards B, Michaels HB (1982) Influence of low pH on the development and decay of 42 degrees C thermotolerance in CHO cells. Int J Radiat Oncol Biol Phys 8:1935–1941

    PubMed  CAS  Google Scholar 

  • Gillams AR (2003) Radiofrequency ablation in the management of liver tumours. Eur J Surg Oncol 29:9–16

    PubMed  CAS  Google Scholar 

  • Gonzalez GD, van Dijk JD, Blank LE, Rumke P (1986) Combined treatment with radiation and hyperthermia in metastatic malignant melanoma. Radiother Oncol 6:105–113

    Google Scholar 

  • Gonzalez GD, van Dijk JD, Blank LE (1988) Chestwall recurrences of breast cancer: results of combined treatment with radiation and hyperthermia. Radiother Oncol 12:95–103

    Google Scholar 

  • de Graeff A, Slebos RJ, Rodenhuis S (1988) Resistance to cisplatin and analogues: mechanisms and potential clinical implications. Cancer Chemother Pharmacol 22:325–332

    PubMed  Google Scholar 

  • Haas-Kock DF, Buijsen J, Pijls-Johannesma M, Lutgens L, Lammering G, van Mastrigt GA et al. Concomitant hyperthermia and radiation therapy for treating locally advanced rectal cancer. Cochrane.Database.Syst.Rev. (2009); CD006269

    Google Scholar 

  • Hahn GM, Ning SC, Elizaga M, Kapp DS, Anderson RL (1989) A comparison of thermal responses of human and rodent cells. Int J Radiat Biol 56:817–825

    PubMed  CAS  Google Scholar 

  • Hand JW (1990) Biophysics and technology of electromagnetic hyperthermia. In: Gauthrie M (ed) Methods of external hyperthermic heating. Springer, Berlin Heidelberg New York Tokio, pp 1–59

    Google Scholar 

  • Hand JW, Lagendijk JJ, Bach AJ, Bolomey JC (1989) Quality assurance guidelines for ESHO protocols. Int J Hyperthermia 5:421–428

    PubMed  CAS  Google Scholar 

  • Hand JW, Machin D, Vernon CC, Whaley JB (1997) Analysis of thermal parameters obtained during phase III trials of hyperthermia as an adjunct to radiotherapy in the treatment of breast carcinoma. Int J Hyperthermia 13:343–364

    PubMed  CAS  Google Scholar 

  • Harima Y, Nagata K, Harima K, Ostapenko VV, Tanaka Y, Sawada S (2001) A randomized clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma. Int J Hyperthermia 17:97–105

    PubMed  CAS  Google Scholar 

  • Hauck M, Zalutsky M, Dewhirst M (1995) Enhancement of radiolabeled monoclonal antibody uptake in tumors with local hyperthermia. In: Torchilin V. Targeted delivery of imaging agents. CRC Press, Boca Raton, FL, pp 335–361

    Google Scholar 

  • Hendrick JP, Hartl FU (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62:349–384

    PubMed  CAS  Google Scholar 

  • Hettinga JV, Konings AW, Kampinga HH (1997) Reduction of cellular cisplatin resistance by hyperthermia – a review. Int J Hyperthermia 13:439–457

    PubMed  CAS  Google Scholar 

  • Hill CR, ter Haar GR (1995) Review article: high intensity focused ultrasound – potential for cancer treatment. Br J Radiol 68:1296–1303

    PubMed  CAS  Google Scholar 

  • Hiraoka M, Jo S, Takahashi M, Abe M (1985) Effectiveness of RF capacitive heating in the treatment of human deep-seated tumors. In: Abe M, Takahashi M, Sugahara T (eds) Hyperthermia in cancer therapy. Mag Bros, Tokio, pp 98–99

    Google Scholar 

  • Hockel M, Knoop C, Schlenger K et al. (1993) Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 26:45–50

    PubMed  CAS  Google Scholar 

  • Hofman P, Knol RG, Lagendijk JJ, Schipper J (1989) Thermoradiotherapy of primary breast carcinoma. Int J Hyperthermia 5:1–11

    PubMed  CAS  Google Scholar 

  • Hornback NB, Shupe RE, Shidnia H, Marshall CU, Lauer T (1986) Advanced stage IIIB cancer of the cervix treatment by hyperthermia and radiation. Gynecol Oncol 23:160–167

    PubMed  CAS  Google Scholar 

  • Huber PE, Rastert R, Simiantonakis I et al. (2001) Magnetic resonance-guided therapy with focused ultrasound. Non-invasive surgery of breast carcinoma? Radiologe 41:173–180

    PubMed  CAS  Google Scholar 

  • Hynynen K, Darkazanli A, Unger E, Schenck JF (1993) MRI-guided noninvasive ultrasound surgery. Med Phys 20:107–115

    PubMed  CAS  Google Scholar 

  • Hynynen K, Pomeroy O, Smith DN et al. (2001) MR imagingguided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology 219:176–185

    PubMed  CAS  Google Scholar 

  • Issels RD, Prenninger SW, Nagele A et al. (1990) Ifosfamide plus etoposide combined with regional hyperthermia in patients with locally advanced sarcomas: a phase II study. J Clin Oncol 8:1818–1829

    PubMed  CAS  Google Scholar 

  • Issels RD, Abdel-Rahman S, Wendtner C et al. (2001) Neoadjuvant chemotherapy combined with regional hyperthermia (RHT) for locally advanced primary or recurrent high-risk adult soft-tissue sarcomas (STS) of adults: long-term results of a phase II study. Eur J Cancer 37:1599–1608

    PubMed  CAS  Google Scholar 

  • Issels RD, Noessner E, Wust P (2002) Hyperthermie. Onkologe 8 (Suppl 1):51–55

    Google Scholar 

  • Issels RD, Lindner LH, Verweij J, Wust P, Reichardt P, Schem BC et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol. 2010;11:561–570

    PubMed  CAS  Google Scholar 

  • Jordan A, Scholz R, Maier-Hauff K et al. (2001) Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magnetism Magn Mat 225:118–126

    CAS  Google Scholar 

  • Jones EL, Samulski TV, Dewhirst MW et al. (2003) A pilot Phase II trial of concurrent radiotherapy, chemotherapy, and hyperthermia for locally advanced cervical carcinoma. Cancer 98:277–282

    PubMed  Google Scholar 

  • Kampinga HH, Dikomey E (2001) Hyperthermic radiosensitization: mode of action and clinical relevance. Int J Radiat Biol 77:399–408

    PubMed  CAS  Google Scholar 

  • Kapp DS, Barnett TA, Cox RS, Lee ER, Lohrbach A, Fessenden P (1991) Hyperthermia and radiation therapy of local-regional recurrent breast cancer: prognostic factors for response and local control of diffuse or nodular tumors. Int J Radiat Oncol Biol Phys 20:1147–1164

    PubMed  CAS  Google Scholar 

  • Kapp DS, Cox RS, Barnett TA, Ben Yosef R (1992) Thermoradiotherapy for residual microscopic cancer: elective or post-excisional hyperthermia and radiation therapy in the management of local-regional recurrent breast cancer. Int J Radiat Oncol Biol Phys 24:261–277

    PubMed  CAS  Google Scholar 

  • Kerner T, Deja M, Ahlers O et al. (1999) Whole body hyperthermia: a secure procedure for patients with various malignancies? Intensive Care Med 25:959–965

    PubMed  CAS  Google Scholar 

  • Kim JH, Kim SH, Dutta P, Pinto J (1992) Preferential killing of glucose-depleted HeLa cells by menadione and hyperthermia. Int J Hyperthermia 8:139–146

    PubMed  CAS  Google Scholar 

  • Kitamura K, Kuwano H, Watanabe M et al. (1995) Prospective randomized study of hyperthermia combined with chemoradiotherapy for esophageal carcinoma. J Surg Oncol 60:55–58

    PubMed  CAS  Google Scholar 

  • Kjellen E, Lindholm CE, Nilsson P (1988) Radiotherapy in combination with hyperthermia in recurrent or metastatic mammary carcinoma. In: Sugahara T, Saito M (eds) Hyperthermic oncology (2). Taylor & Francis, London, pp 426–429

    Google Scholar 

  • Kong G, Braun RD, Dewhirst MW (2000) Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res 60:4440–4445

    PubMed  CAS  Google Scholar 

  • Leal BZ, Meltz ML, Mohan N, Kuhn J, Prihoda TJ, Herman TS (1999) Interaction of hyperthermia with Taxol in human MCF-7 breast adenocarcinoma cells. Int J Hyperthermia 15:225–236

    PubMed  CAS  Google Scholar 

  • Leeper DB, Engin K, Thistlethwaite AJ et al. (1994) Human tumor extracellular pH as a function of blood glucose concentration. Int J Radiat Oncol Biol Phys 28:935–943

    PubMed  CAS  Google Scholar 

  • De Leeuw AA, Lagendijk JJ (1987) Design of a clinical deepbody hyperthermia system based on the ‘coaxial TEM’ applicator. Int J Hyperthermia 3:413–421

    PubMed  CAS  Google Scholar 

  • Li R, Wan HP, Lin Y, Zhang T (1985) Clinical evaluation of combined radiotherapy and thermotherapy on carcinoma of the breast. Clin Oncol 12:73–76

    Google Scholar 

  • Li GC, Mivechi NF, Weitzel G (1995) Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia. Int J Hyperthermia 11:459–488

    PubMed  CAS  Google Scholar 

  • Lindholm CE, Kjellen E, Nilsson P, Hertzman S (1987) Microwave-induced hyperthermia and radiotherapy in human superficial tumours: clinical results with a comparative study of combined treatment versus radiotherapy alone. Int J Hyperthermia 3:393–411

    PubMed  CAS  Google Scholar 

  • Lindner LH, Schlemmer M, Hohenberger P et al. (2004) First interim report on the randomized EORTC 62961/ESHORHT 95 Intergroup Study (Phase III) combined with regional hyperthermia (RHT) versus chemotherapy alone in the treatment of high-risk soft tissue sarcomas (HR-STS) in adults. J Clin Oncol, ASCO Annual Meeting Proceedings 22(14S), 9015

    Google Scholar 

  • Lutgens L, van der ZJ, Pijls-Johannesma M, Haas-Kock DF, Buijsen J, Mastrigt GA et al. Combined use of hyperthermia and radiation therapy for treating locally advanced cervix carcinoma. Cochrane.Database.Syst.Rev. 2010;3:CD006377.

    Google Scholar 

  • Lyng H, Monge OR, Bohler PJ, Rofstad EK (1991) Temperature distribution in locally advanced breast carcinoma during hyperthermic treatment: relationship to perfusion, vascular density, and histology. Int J Radiat Oncol Biol Phys 21:423–430

    PubMed  CAS  Google Scholar 

  • Madersbacher S, Pedevilla M, Vingers L, Susani M, Marberger M (1995) Effect of high-intensity focused ultrasound on human prostate cancer in vivo. Cancer Res 55:3346–3351

    PubMed  CAS  Google Scholar 

  • Maehara Y, Kuwano H, Kitamura K, Matsuda H, Sugimachi K (1992) Hyperthermochemoradiotherapy for esophageal cancer (review). Anticancer Res 12:805–810

    PubMed  CAS  Google Scholar 

  • Masunaga S, Hiraoka M, Takahashi M et al. (1990) Clinical results of thermoradiotherapy for locally advanced and/or recurrent breast cancer – comparison of results with radiotherapy alone. Int J Hyperthermia 6:487–497

    PubMed  CAS  Google Scholar 

  • McDannold NJ, Jolesz FA, Hynynen KH (1999) Determination of the optimal delay between sonications during focused ultrasound surgery in rabbits by using MR imaging to monitor thermal buildup in vivo. Radiology 211:419–426

    PubMed  CAS  Google Scholar 

  • Meyer DE, Kong GA, Dewhirst MW, Zalutsky MR, Chilkoti A (2001) Targeting a genetically engineered elastin-like polypeptide to solid tumors by local hyperthermia. Cancer Res 61:1548–1554

    PubMed  CAS  Google Scholar 

  • Milani V, Noessner E, Ghose S et al. (2002) Heat shock protein 70: role in antigen presentation and immune stimulation. Int J Hyperthermia 18:563–575

    PubMed  CAS  Google Scholar 

  • Mivechi NF, Dewey WC (1985) DNA polymerase alpha and beta activities during the cell cycle and their role in heat radiosensitization in Chinese hamster ovary cells. Radiat Res 103:337–350

    PubMed  CAS  Google Scholar 

  • Molls M (1989) Meeting report: Deep local and regional hyperthermia. J Cancer Res Clin Oncol 115:207–210

    Google Scholar 

  • Molls M, Feldmann HJ (1991) Clinical investigations of blood flow in malignant tumors of the pelvis and abdomen. In: Vaupel P, Jaik RK (eds) Tumor blood flow supply and metabolic microenvironment: characterization and implication for therapy. Fischer, Stuttgart, pp 143–153

    Google Scholar 

  • Morano KA, Thiele DJ (1999) Heat shock factor function and regulation in response to cellular stress, growth, and differentiation signals. Gene Expr 7:271–282

    PubMed  CAS  Google Scholar 

  • Morimoto RI, Sarge KD, Abravaya K (1992) Transcriptional regulation of heat shock genes. A paradigm for inducible genomic responses. J Biol Chem 267:21987–21990

    PubMed  CAS  Google Scholar 

  • Morimoto RI, Kroeger PE, Cotto JJ (1996) The transcriptional regulation of heat shock genes: a plethora of heat shock factors and regulatory conditions. EXS 77:139–163

    PubMed  CAS  Google Scholar 

  • Moros EG, Straube WL, Klein EE, Yousaf M, Myerson RJ (1995) Simultaneous delivery of electron beam therapy and ultrasound hyperthermia using scanning reflectors: a feasibility study. Int J Radiat Oncol Biol Phys 31:893–904

    PubMed  CAS  Google Scholar 

  • Mueller-Klieser W, Walenta S, Kelleher DK, Dinh H, Marx E, Vaupel P (1996) Tumour-growth inhibition by induced hyperglycaemia/hyperlactacidaemia and localized hyperthermia. Int J Hyperthermia 12:501–511

    PubMed  CAS  Google Scholar 

  • Multhoff G, Botzler C, Wiesnet M et al. (1995) A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer 61:272–279

    PubMed  CAS  Google Scholar 

  • Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R (1997) Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J Immunol 158:4341–4350

    PubMed  CAS  Google Scholar 

  • Myerson RJ, Straube WL, Moros EG et al. (1999) Simultaneous superficial hyperthermia and external radiotherapy: report of thermal dosimetry and tolerance to treatment. Int J Hyperthermia 15:251–266

    PubMed  CAS  Google Scholar 

  • Ning SC, Hahn GM (1991) Combination therapy: lonidamine, hyperthermia, and chemotherapy against the RIF-1 tumor in vivo. Cancer Res 51:5910–5914

    PubMed  CAS  Google Scholar 

  • Oleson JR (1984) A review of magnetic induction methods for hyperthermia treatment of cancer. IEEE Trans Biomed Eng 31:91–97

    PubMed  CAS  Google Scholar 

  • Oleson JR, Samulski TV, Leopold KA et al. (1993) Sensitivity of hyperthermia trial outcomes to temperature and time: implications for thermal goals of treatment. Int J Radiat Oncol Biol Phys 25:289–297

    PubMed  CAS  Google Scholar 

  • Overgaard J (1980) Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding normal tissue in vivo. Int J Radiat Oncol Biol Phys 6:1507–1517

    PubMed  CAS  Google Scholar 

  • Overgaard J (1981) Fractionated radiation and hyperthermia: experimental and clinical studies. Cancer 48:1116–1123

    PubMed  CAS  Google Scholar 

  • Overgaard J (1982) Influence of sequence and interval on the biological response to combined hyperthermia and radiation. Natl Cancer Inst Monogr 61:325–332

    PubMed  CAS  Google Scholar 

  • Overgaard J, Gonzalez GD, Hulshof MC et al. (1995) Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. European Society for Hyperthermic Oncology. Lancet 345:540–543

    PubMed  CAS  Google Scholar 

  • Overgaard J, Gonzalez GD, Hulshof MC et al. (1996) Hyperthermia as an adjuvant to radiation therapy of recurrent or metastatic malignant melanoma. A multicentre randomized trial by the European Society for Hyperthermic Oncology. Int J Hyperthermia 12:3–20

    PubMed  CAS  Google Scholar 

  • Parsons PG (1984) Dependence on treatment time of melphalan resistance and DNA cross-linking in human melanoma cell lines. Cancer Res 44:2773–2778

    PubMed  CAS  Google Scholar 

  • Peller M, Loffler R, Baur A et al. (1999) MRI-controlled regional hyperthermia. Radiologe 39:756–763

    PubMed  CAS  Google Scholar 

  • Perez CA, Kuske RR, Emami B, Fineberg B (1986) Irradiation alone or combined with hyperthermia in the treatment of recurrent carcinoma of the breast in the chest wall: a nonrandomized comparison. Int J Hyperthermia 2:179–187

    PubMed  CAS  Google Scholar 

  • Perez CA, Gillespie B, Pajak T, Hornback NB, Emami B, Rubin P (1989) Quality assurance problems in clinical hyperthermia and their impact on therapeutic outcome: a Report by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 16:551–558

    PubMed  CAS  Google Scholar 

  • Prosnitz LR, Maguire P, Anderson JM et al. (1999) The treatment of high-grade soft tissue sarcomas with preoperative thermoradiotherapy. Int J Radiat Oncol Biol Phys 45: 941–949

    PubMed  CAS  Google Scholar 

  • Raaphorst GP (1990) Fundamental aspects of hyperthermic biology. In: Field S, Hand J (eds) An introduction to the practical aspects of clinical hyperthermia. Taylor & Francis, London, pp 10–54

    Google Scholar 

  • Raaphorst GP, Yang DP, Ng CE (1994) Effect of protracted mild hyperthermia on polymerase activity in a human melanoma cell line. Int J Hyperthermia 10:827–834

    PubMed  CAS  Google Scholar 

  • Raaphorst GP, Ng CE, Yang DP (1999) Thermal radiosensitization and repair inhibition in human melanoma cells: a comparison of survival and DNA double strand breaks. Int J Hyperthermia 15:17–27

    PubMed  CAS  Google Scholar 

  • Rau B, Wust P, Gellermann J et al. (1998) Phase II study on preoperative radio-chemo-thermotherapy in locally advanced rectal carcinoma. Strahlenther Onkol 174:556–565

    PubMed  CAS  Google Scholar 

  • Rau B, Wust P, Tilly W et al. (2000 a) Preoperative radiochemotherapy in locally advanced or recurrent rectal cancer: regional radiofrequency hyperthermia correlates with clinical parameters. Int J Radiat Oncol Biol Phys 48:381–391

    PubMed  CAS  Google Scholar 

  • Rau B, Wust P, Riess H, Schlag PM (2000 b) Preoperative radiochemotherapy of rectal carcinoma. Current status. Zentralbl Chir 125:356–364

    PubMed  CAS  Google Scholar 

  • Rau B, Wust P, Riess H, Schlag PM (2001) Radiochemotherapy plus hyperthermia in rectal carcinoma. Schweiz Rundsch Med Prax 90:587–592

    CAS  Google Scholar 

  • Reinhold HS (1988) Physiological effects of hyperthermia. Rec Res Cancer Res 107:32–43

    CAS  Google Scholar 

  • van Rhoon GC, Visser AG, van den Berg PM, Reinhold HS (1988) Evaluation of ring capacitor plates for regional deep heating. Int J Hyperthermia 4:133–142

    PubMed  Google Scholar 

  • Roemer RB, Oleson JR, Cetas TC (1985) Oscillatory temperature response to constant power applied to canine muscle. Am J Physiol 249:R153–R158

    Google Scholar 

  • Roizin-Towle L, Pirro JP (1991) The response of human and rodent cells to hyperthermia. Int J Radiat Oncol Biol Phys 20:751–756

    PubMed  CAS  Google Scholar 

  • Sakaguchi Y, Stephens LC, Makino M et al. (1995) Apoptosis in tumors and normal tissues induced by whole body hyperthermia in rats. Cancer Res 55:5459–5464

    PubMed  CAS  Google Scholar 

  • Samulski TV, Fessenden P, Valdagni R, Kapp DS (1987) Correlations of thermal washout rate, steady state temperatures, and tissue type in deep seated recurrent or metastatic tumors. Int J Radiat Oncol Biol Phys 13:907–916

    PubMed  CAS  Google Scholar 

  • Schlag PM, Benhidjeb T, Budach V (1999) Hyperthermic radiochemotherapy for esophageal cancer – Rationale and concept of a phase III trial. Onkologie 22:48–52

    Google Scholar 

  • Schneider DT, Wessalowski R, Calaminus G et al. (2001) Treatment of recurrent malignant sacrococcygeal germ cell tumors: analysis of 22 patients registered in the German protocols MAKEI 83/86, 89, and 96. J Clin Oncol 19:1951–1960

    PubMed  CAS  Google Scholar 

  • Scott RS, Johnson RJ, Story KV, Clay L (1984) Local hyperthermia in combination with definitive radiotherapy: increased tumor clearance, reduced recurrence rate in extended follow-up. Int J Radiat Oncol Biol Phys 10:2119–2123

    PubMed  CAS  Google Scholar 

  • Seebass M, Beck R, Gellermann J, Nadobny J, Wust P (2001) Electromagnetic phased arrays for regional hyperthermia: optimal frequency and antenna arrangement. Int J Hyperthermia 17:321–336

    PubMed  CAS  Google Scholar 

  • Shakil A, Osborn JL, Song CW (1999) Changes in oxygenation status and blood flow in a rat tumor model by mild temperature hyperthermia. Int J Radiat Oncol Biol Phys 43: 859–865

    PubMed  CAS  Google Scholar 

  • Sharma S, Sandhu AP, Patel FD, Ghoshal S, Gupta BD, Yadav NS (1990) Side-effects of local hyperthermia: results of a prospectively randomized clinical study. Int J Hyperthermia 6:279–285

    PubMed  CAS  Google Scholar 

  • Shchepotin IB, Soldatenkov V, Buras RR, Nauta RJ, Shabahang M, Evans SR (1994) Apoptosis of human primary and metastatic colon adenocarcinoma cell lines in vitro induced by 5-fluorouracil, verapamil, and hyperthermia. Anticancer Res 14:1027–1031

    PubMed  CAS  Google Scholar 

  • Sneed PK, Stauffer PR, McDermott MW et al. (1998) Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost +/– hyperthermia for glioblastoma multiforme. Int J Radiat Oncol Biol Phys 40:287–295

    PubMed  CAS  Google Scholar 

  • Song CW, Kim GE, Lyons JC et al. (1994) Thermosensitization by increasing intracellular acidity with amiloride and its analogs. Int J Radiat Oncol Biol Phys 30:1161–1169

    PubMed  CAS  Google Scholar 

  • Song CW, Park H, Griffin RJ (2001) Improvement of tumor oxygenation by mild hyperthermia. Radiat Res 155:515–528

    PubMed  CAS  Google Scholar 

  • Srivastava PK, Amato RJ (2001) Heat shock proteins: the ‘Swiss Army Knife’ vaccines against cancers and infectious agents. Vaccine 19:2590–2597

    PubMed  CAS  Google Scholar 

  • Storm FK, Harrison W, Elliott RS, Kaiser LR, Silberman AW, Morton DL (1981) Clinical radiofrequency hyperthermia by magnetic-loop induction. J Microw Power 16:179–184

    PubMed  CAS  Google Scholar 

  • Straube WL, Klein EE, Moros EG, Low DA, Myerson RJ (2001) Dosimetry and techniques for simultaneous hyperthermia and external beam radiation therapy. Int J Hyperthermia 17:48–62

    PubMed  CAS  Google Scholar 

  • Streffer C (1985) Metabolic changes during and after hyperthermia. Int J Hyperthermia 1:305–319

    PubMed  CAS  Google Scholar 

  • Streffer C (1995) Molecular and cellular mechanisms of hyperthermia. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiotherapy and thermochemotherapy. Springer, Berlin Heidelberg New York Tokio, pp 47–74

    Google Scholar 

  • Sugimachi K, Kitamura K, Baba K et al. (1992) Hyperthermia combined with chemotherapy and irradiation for patients with carcinoma of the oesophagus – a prospective randomized trial. Int J Hyperthermia 8:289–295

    PubMed  CAS  Google Scholar 

  • Sugimachi K, Kuwano H, Ide H, Toge T, Saku M, Oshiumi Y (1994) Chemotherapy combined with or without hyperthermia for patients with oesophageal carcinoma: a prospective randomized trial. Int J Hyperthermia 10:485–493

    PubMed  CAS  Google Scholar 

  • Tamura Y, Peng P, Liu K, Daou M, Srivastava PK (1997) Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 278:117–120

    PubMed  CAS  Google Scholar 

  • Ter Haar G (1995) Ultrasound focal beam surgery. Ultrasound Med Biol 21:1089–1100

    PubMed  CAS  Google Scholar 

  • Thrall DE, Gillette EL, Dewey WC (1975) Effect of heat and ionizing radiation on normal and neoplastic tissue of the C3H mouse. Radiat Res 63:363–377

    PubMed  CAS  Google Scholar 

  • Towle LR (1994) Hyperthermia and drug resistance. In: Urano M, Douple E (eds) Hyperthermia and Oncology (4). pp 91–113

    Google Scholar 

  • Turner PF (1984) Regional hyperthermia with an annular phased array. IEEE Trans Biomed Eng 31:106–114

    PubMed  CAS  Google Scholar 

  • Turner PF, Schaefermeyer T (1989) BSD-2000 approach for deep local and regional hyperthermia: clinical utility. Strahlenther Onkol 165:700–704

    PubMed  CAS  Google Scholar 

  • Vaden SL, Page RL, Williams PL, Riviere JE (1994) Effect of hyperthermia on cisplatin and carboplatin disposition in the isolated, perfused tumour and skin flap. Int J Hyperthermia 10:563–572

    PubMed  CAS  Google Scholar 

  • Valdagni R, Amichetti M, Pani G (1988) Radical radiation alone versus radical radiation plus microwave hyperthermia for N3 (TNM-UICC) neck nodes: a prospective randomized clinical trial. Int J Radiat Oncol Biol Phys 15:13–24

    PubMed  CAS  Google Scholar 

  • Vasanthan A, Mitsumori M, Park JH et al. (2005) Regional hyperthermia combined with radiotherapy for uterine cervical cancers: a multi-institutional prospective randomized trial of the international atomic energy agency. Int J Radiat Oncol Biol Phys 61:145–153

    PubMed  Google Scholar 

  • Vaupel PW, Kelleher DK (1995) Metabolic status and reaction to heat of normal and tumor tissue. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiotherapy and thermochemotherapy. Springer, Berlin Heidelberg New York Tokio, pp 157–176

    Google Scholar 

  • Vernon CC, Hand JW, Field SB et al. (1996) Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: Results from five randomized controlled trials. Int J Radiat Oncol Biol Phys 35:731–744

    PubMed  CAS  Google Scholar 

  • Vujaskovic Z, Poulson JM, Gaskin AA et al. (2000) Temperaturedependent changes in physiologic parameters of spontaneous canine soft tissue sarcomas after combined radiotherapy and hyperthermia treatment. Int J Radiat Oncol Biol Phys 46:179–185

    PubMed  CAS  Google Scholar 

  • Wahl ML, Bobyock SB, Leeper DB, Owen CS (1997) Effects of 42 degrees C hyperthermia on intracellular pH in ovarian carcinoma cells during acute or chronic exposure to low extracellular pH. Int J Radiat Oncol Biol Phys 39:205–212

    PubMed  CAS  Google Scholar 

  • Wells AD, Malkovsky M (2000) Heat shock proteins, tumor immunogenicity and antigen presentation: an integrated view. Immunol Today 21:129–132

    PubMed  CAS  Google Scholar 

  • Wessalowski R, Kruck H, Pape H, Kahn T, Willers R, Gobel U (1998) Hyperthermia for the treatment of patients with malignant germ cell tumors: a phase I/II study in ten children and adolescents with recurrent or refractory tumors. Cancer 82:793–800

    PubMed  CAS  Google Scholar 

  • Wust P, Riess H, Hildebrandt B et al. (2000) Feasibility and analysis of thermal parameters for the whole-body-hyperthermia system IRATHERM-2000. Int J Hyperthermia 16:325–339

    PubMed  CAS  Google Scholar 

  • van der Zee J, Treurniet-Donker AD, The SK et al. (1988) Low dose reirradiation in combination with hyperthermia: a palliative treatment for patients with breast cancer recurring in previously irradiated areas. Int J Radiat Oncol Biol Phys 15:1407–1413

    PubMed  Google Scholar 

  • van der Zee J, Gonzalez GD, van Rhoon GC, van Dijk JD, van Putten WL, Hart AA (2000) Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 355:1119–1125

    PubMed  Google Scholar 

  • van der ZJ, De Bruijne M, Mens JW, Ameziane A, Broekmeyer-Reurink MP, Drizdal T et al. Reirradiation combined with hyperthermia in breast cancer recurrences: overview of experience in Erasmus MC. Int.J.Hyperthermia 2010;26:638–648.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Combs, S. (2013). Hyperthermie. In: Wannenmacher, M., Wenz, F., Debus, J. (eds) Strahlentherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88305-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88305-0_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88304-3

  • Online ISBN: 978-3-540-88305-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics