Skip to main content

Nanostructure-Based Localized Surface Plasmon Resonance Biosensors

  • Chapter
  • First Online:
Optical Guided-wave Chemical and Biosensors I

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 7))

Abstract

This chapter reviews the characteristics of localized surface plasmon resonance (LSPR), the excitation of which is mediated by nanostructures, and its applications to biosensing. The LSPR is explored in three regimes in terms of creation and coupling of localized surface plasmons (LSPs): LSPs created in surface-relief patterns coupled to propagating surface plasmons (SPs), LSPs in surface-relief patterns coupled to particle plasmons, and LSPs created in particles. The results, in general, suggest that localized field enhancement in the near-field be correlated with enhanced detection sensitivity for LSPR over conventional thin film-based SP resonance while LSPR-based biosensors can potentially maintain flexibility by using nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCD:

Charge coupled device

DNA:

Deoxyribonucleic acid

EMT:

Effective medium theory

FOM:

Figure of merit

HDT:

1,6-hexanedithiol

LSP:

Localized surface plasmon

LSPR:

Localized surface plasmon resonance

SAM:

Self-assembled monolayer

SEF:

Sensitivity enhancement factor

SP:

Surface plasmon

SPR:

Surface plasmon resonance

VF:

Volume fraction

c :

Free-space light speed

d f :

Film thickness

d NW :

Nanowire thickness

d SAM :

Thickness of a self-assembled monolayer

e :

Electron charge

f :

Fill factor

k 0 :

Free-space light wave vector

k SP :

Plasmon momentum

m :

Electron mass

n e :

Electron number density

n env :

Ambient refractive index

n SAM :

Refractive index of a self-assembled monolayer

R min :

Minimum reflectance at resonance

S :

Slope of the resonance angle or resonance wavelength

T max :

Maximum transmittance at resonance

ω :

Light angular frequency

w NW :

Nanowire width

w p :

Plasma angular frequency

ε d :

Dielectric permittivity

ε eff :

Effective permittivity

ε m :

Metal permittivity

ε np :

Nanoparticle permittivity

ε A (ε B):

Permittivity of material A (B)

ε 0,TE :

Zeroth-order effective permittivity for TE polarization

ε 0,TM :

Zeroth-order effective permittivity for TM polarization

θ SP :

Plasmon resonance angle

θ LSP :

Localized plasmon resonance angle

Λ :

Period

λ :

Light wavelength

References

  1. Strutt JW (Lord Rayleigh) (1907) Dynamical theory of the grating. Proc Roy Soc A79:399–416

    Google Scholar 

  2. Wood RW (1902) On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philos Magazine 4:396–402

    Google Scholar 

  3. Liedberg B, Nylanderm C, Lundström I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4:299–304

    Article  CAS  Google Scholar 

  4. Liedberg B, Nylanderm C, Lundström I (1995) Biosensing with surface plasmon resonance – how it all started. Biosens Bioelectron 10:1–9

    Article  Google Scholar 

  5. Malmqvist M (1993) Biospecific interaction analysis using biosensor technology. Nature 361:186–187

    Article  CAS  Google Scholar 

  6. Abdulhalim I, Zourob M, Lakhtakia A (2008) Surface plasmon resonance for biosensing: a mini-review. Electromagnetics 28:214–242

    Article  Google Scholar 

  7. Salomon Z, Lindblom G, Rilfors L et al (2000) Interaction of phosphatidylserine synthase from E. coli with lipid bilayers: coupled plasmon-waveguide resonance spectroscopy studies. Biophys J 78:1400–1412

    Article  Google Scholar 

  8. Raether H (1988) Surface plasmon on smooth and rough surfaces and on gratings. Springer, Berlin, Germany

    Google Scholar 

  9. Campbell CT, Kim G (2007) SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28:2380–2392

    Article  CAS  Google Scholar 

  10. Ran B, Lipson SG (2006) Comparison between sensitivities of phase and intensity detection in surface plasmon resonance. Opt Express 14:5641–5650

    Article  CAS  Google Scholar 

  11. Rytov SM (1956) Electromagnetic properties of a finely stratified medium. Sov Phys JETP 2:466–475

    Google Scholar 

  12. Kim D, Yoon SJ (2007) Effective medium-based analysis of nanowire-mediated localized surface plasmon resonance. Appl Opt 46:872–880

    Article  Google Scholar 

  13. Sherry LJ, Chang SH, Schatz GC et al (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038

    Article  CAS  Google Scholar 

  14. Kim D (2006) Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors. J Opt Soc Am A 23:2307–2314

    Article  Google Scholar 

  15. Ebbesen TW, Lezec HJ, Ghaemi HF et al (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  16. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46

    Article  CAS  Google Scholar 

  17. Yoon SJ, Kim D (2007) Thin-film-based field penetration engineering for surface plasmon resonance biosensing. J Opt Soc Am A 24:2543–2549

    Article  Google Scholar 

  18. Kim K, Yoon SJ, Kim D (2006) Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study. Opt Express 14:12419–12431

    Article  Google Scholar 

  19. Pockrand I, Raether H (1976) Surface plasma oscillations in silver films with wavy surface profiles: a quantitative experimental study. Opt Commun 18:395–399

    Article  CAS  Google Scholar 

  20. Raether H (1982) Dispersion relation of surface plasmons on gold- and silver gratings. Opt Commun 42:217–222

    Article  CAS  Google Scholar 

  21. Byun KM, Kim SJ, Kim D (2006) Profile effect on the feasibility of extinction-based localized surface plasmon resonance biosensors with metallic nanowires. Appl Opt 45:3382–3389

    Article  Google Scholar 

  22. Byun KM, Kim SJ, Kim D (2005) Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis. Opt Express 13:3737–3742

    Article  Google Scholar 

  23. Kottmann JP, Martin OJF, Smith DR et al (2001) Plasmon resonances of silver nanowires with a nonregular cross section. Phys Rev B 64:235402

    Article  Google Scholar 

  24. Yoon SJ, Kim D (2008) Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors. J Opt Soc Am A 25:725–735

    Article  Google Scholar 

  25. Jung LS, Campbell CT, Chinowsky TM et al (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14:5636–5648

    Article  CAS  Google Scholar 

  26. Byun KM, Yoon SJ, Kim D et al (2007) Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires. Opt Lett 32:1902–1904

    Article  CAS  Google Scholar 

  27. Byun KM, Yoon SJ, Kim D et al (2007) Sensitivity analysis of a nanowire-based surface plasmon resonance biosensor in the presence of surface roughness. J Opt Soc Am A 24:522–529

    Article  CAS  Google Scholar 

  28. Malic L, Cui B, Veres T et al (2007) Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts. Opt Lett 32:3092–3094

    Article  CAS  Google Scholar 

  29. Maxwell Garnett JC (1904) Colours in metal glasses and in metallic films. Philos Trans R Soc A 203:385–420

    Article  Google Scholar 

  30. Maxwell Garnett JC (1906) Colours in metal glasses, in metallic films and in solutions II. Philos Trans R Soc A 205:237–288

    Article  Google Scholar 

  31. Lyon LA, Musick MD, Natan MJ (1998) Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal Chem 70:5177–5183

    Article  CAS  Google Scholar 

  32. He L, Musick MD, Nicewarner SR et al (2000) Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122:9071–9077

    Article  CAS  Google Scholar 

  33. Lyon LA, Pena DJ, Natan MJ (1999) Surface plasmon resonance of Au colloid-modified Au films: particle size dependence. J Phys Chem B 103:5826–5831

    Article  CAS  Google Scholar 

  34. Daffertshofer M, Port H, Wolf HC (1995) Fluorescence quenching of ultrathin anthracene films by dielectric and metallic substrates. Chem Phys 200:225–233

    Article  CAS  Google Scholar 

  35. Yu F, Persson B, Löfås S et al (2004) Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy. J Am Chem Soc 126:8902–8903

    Article  CAS  Google Scholar 

  36. Holland WR, Hall DG (1983) Surface-plasmon dispersion relation: shifts induced by the interaction with localized plasma resonances. Phys Rev B 27:7765–7768

    Article  CAS  Google Scholar 

  37. Kume T, Nakagawa N, Hayashi S et al (1995) Interaction between localized and propagating surface plasmons: Ag fine paticles on Al surface. Solid State Commun 93:171–175

    Article  CAS  Google Scholar 

  38. Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604

    Article  CAS  Google Scholar 

  39. Kelly KL, Coronado E, Zhao LL et al (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  40. Haes AJ, Zou S, Schatz GC et al (2004) A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108:109–116

    Article  CAS  Google Scholar 

  41. McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–1062

    Article  CAS  Google Scholar 

  42. Malinsky MD, Kelly KL, Schatz GC et al (2001) Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc 123:1471–1482

    Article  CAS  Google Scholar 

  43. Lamprecht B, Schider G, Lechner RT et al (2000) Metal nanoparticle gratings: influence of dipolar particle interaction on the particle resonance. Phys Rev Lett 84:4721–4724

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Kyung Min Byun and Soon Joon Yoon for proof-reading the manuscript and appreciates Dr. Eunji Sim for insightful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghyun Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, D. (2010). Nanostructure-Based Localized Surface Plasmon Resonance Biosensors. In: Zourob, M., Lakhtakia, A. (eds) Optical Guided-wave Chemical and Biosensors I. Springer Series on Chemical Sensors and Biosensors, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88242-8_7

Download citation

Publish with us

Policies and ethics