Skip to main content

Planar-Waveguide Interferometers for Chemical Sensing

  • Chapter
  • First Online:
Optical Guided-wave Chemical and Biosensors I

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 7))

  • 1132 Accesses

Abstract

Interferometry is an optical technique that compares the differences experienced by two light beams traveling along similar paths. Planar waveguides have evanescent fields sensitive to changes in the index of refraction in the volume immediately above the waveguide surface. Placing a chemically sensitive film within this region provides the basis for chemical sensing. Film–analyte interactions change the index of refraction, causing the propagating light speed or phase to change in a direction of opposite sign to that of the index change. To measure this change, a reference propagating beam, which is adjacent to the sensing beam, is combined optically with the sensing beam, thus creating an interference pattern of alternating dark and light fringes. When chemical or physical changes occur in the sensing arm, the interference pattern shifts, producing a sinusoidal output. Waveguides and interferometers come in a variety of designs, but all rely on the evanescent field interacting with a chemically selective film to produce a measured response. The sensing mechanism can be passive (a physical change) or active (reactive sites in the film). Through a judicious choice of sensing films, interferometers can be designed to detect a wide variety of chemical and biological materials. Multi-interferometer devices with several different sensing films can be used to detect and identify a variety of different chemical or biological analytes either through specific sensing chemistry or through analysis of patterned response from an array of different films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FTIR:

Fourier transform infrared spectroscopy

TM:

Transverse magnetic

TE:

Transverse electric

ARROW:

Anti-resonant reflecting optical waveguide

Teflon AF® :

Teflon amorphous fluoropolymer – Dupont trademark

HEPES:

(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer

TCE:

Trichloroethylene

DCE:

1,2-dichloroethylene

VC:

Vinyl chloride

TNT:

2,4,6-trinitrotoluene

BTEB:

Bis(trimethoxysilylethyl)benzene

IMTS:

Iodotrimethylsilane

SAW:

Surface acoustic wave

SWG:

Super white glass

TATP:

Triacetone triperoxide

TIR:

Total internal reflection

Ï•:

Phase

n :

Refractive index

n c :

Cover refractive index

n s :

Substrate refractive index

n f :

Waveguide film refractive index

n eff :

Effective mode index

n o :

Ordinary refractive index of birefringent material

λ:

Wavelength

L:

Pathlength

W eff :

Effective waveguide thickness

m:

Mode number

z c :

Lateral phase shift in the cover

z s :

Lateral phase shift in the substrate

β :

Propagation constant

Λ :

Fringe period

Tg:

Glass transition temperature

pKa:

Acidity constant

dn/dT :

Refractive index change with change in temperature

χc :

Optical beam's penetration in the cover

χs :

Optical beam's penetration in the substrate

References

  1. Young T (1804) The Bakerian lecture. Experiments and calculations relative to physical optics. Phil Trans R Soc Lond 94:1–16

    Article  Google Scholar 

  2. Lukosz W, Tiefenthaler K (1983) Sensitivity of grating couplers as integrated-optical chemical sensors. In: 2nd European conference on integrated optics, Florence IEEE conference proceedings, vol 227, pp 152–153

    CAS  Google Scholar 

  3. Tiefenthaler K, Lukosz W (1984) Integrated optical switches and gas sensors. Opt Lett 9:137–139

    Article  CAS  Google Scholar 

  4. Tiefenthaler K, Lukosz W (1985) Grating couplers as integrated optical humidity and gas sensors. Thin Solid Films 126:205–211

    Article  CAS  Google Scholar 

  5. Campbell DP, McCloskey CJ (2002) Optical interferometric biosensors. In: Ligler FS, Rowe Taitt CA (eds). Optical Biosensors: Present and Future. Elsevier, Netherlands, pp 277–304

    Google Scholar 

  6. Campbell DP (2008) Interferometric biosensors. In: Zourob M, Elwary MS, Turner A (eds) Principles of bacterial detection: biosensors, recognition receptors and microsystems. Springer, New York, pp 169–208

    Chapter  Google Scholar 

  7. Lambeck PV (2006) Integrated optical sensors for the chemical domain. Measurement Science and Technology 17:R93–R116

    Article  Google Scholar 

  8. Kersey AD (1990) Recent progress in interferometric fiber sensor technology. In: Depaula RP, Udd E (eds). Fiber and Laser Sensors VIII Proc Soc Photo Opt Instrum Eng 1367:2–12

    Google Scholar 

  9. Nishihara H, Haruna M, Suhara T (1985) Optical integrated circuits, Chap 2, McGraw-Hill, New York

    Google Scholar 

  10. Gato L, Srivastava R (1996) Time-dependent surface-index change in ion-exchanged waveguides. Opt Commun 123:483–486

    Article  CAS  Google Scholar 

  11. Millar CA, Hutchins RH (1978) Manufacturing tolerances for silver-sodium ion-exchange planar optical waveguides. J Phys D Appl Phys 11:1567–1576

    Article  CAS  Google Scholar 

  12. Walker RG, Wilkinson CDW (1983) Integrated optical ring resonators made by silver ion-exchange in glass. Appl Opt 22:1029–1035

    Article  CAS  Google Scholar 

  13. Nishihara H, Haruna M, Suhara T (1985) Optical integrated circuits. McGraw-Hill, US, p 226

    Google Scholar 

  14. Heuberger K, Lukosz W (1986) Embossing technique for fabricating surface relief gratings on hard oxide waveguides. Appl Opt 25:1499–1504

    Article  CAS  Google Scholar 

  15. Ramos BL, Choquette SJ, Nell NF Jr (1996) Embossable grating couplers for planar waveguide. Opt Sens Anal Chem 68:1245–1249

    CAS  Google Scholar 

  16. Hartman NF (1990) Optical sensing apparatus and method. US Patent 4,940,328

    Google Scholar 

  17. Campbell DP (2005) Interferometric sensors for monitoring our environment. In: Proceedings of LAT conference, St Petersburg, Russia

    Google Scholar 

  18. Heideman RG, Kooyman RPH, Greve J (1994) Immunoactivity of adsorbed anti human chorionic gonadotropin studied with an optical waveguide interferometric sensor. Biosens Bioelectron 9:33–43

    Article  CAS  Google Scholar 

  19. Heideman RG, Veldhuis GJ, Jager EWH, Lambeck PV (1996) Fabrication and packaging of integrated chemo-optical sensors. Sensors Actuators B: Chem 35:234–240

    Article  Google Scholar 

  20. Brandenburg A (1997) Differential refractometery by an integrated optical Young interferometer. Sensors Actuators B: Chem 38:266–271

    Article  Google Scholar 

  21. Brandenburg A, Krauter R, Kunzel M, Schulte H (2000) Interferometric sensor for detection of surface bound bioreactions. Appl Opt 39:6396–6405

    Article  CAS  Google Scholar 

  22. Campbell DP, Moore JL, Cobb JM, Hartman NF, Schneider BH, Venugopal MG (1998) Optical system-on-a-chip for chemical and biochemical sensing: the chemistry. Proc SPIE 3540:153–161

    Google Scholar 

  23. Heideman RG (1993) Optical waveguide based evanescent field immunosensors. PhD dissertation, University of Twente, Netherlands

    Google Scholar 

  24. Stamm CH, Lukosz W (1993) Integrated optical difference interferometer as refractometer and chemical sensor. Sensors Actuators B: Chem 11:177–181

    Article  Google Scholar 

  25. Stamm CH, Lukosz W (1994) Integrated optical difference interferometer as biochemical sensor. Sensors Actuators B: Chem 18:183–187

    Article  CAS  Google Scholar 

  26. Hartman NF, Cobb JM, Edwards JG (1998) Optical system on-a-chip for chemical and biochemical sensing: the platform. Proc Soc Photo Opt Instrum Eng 3537:302–309

    Google Scholar 

  27. Koster T, Posthuma N, Lambeck P (2000) Fully integrated optical polarimeter. Europtrode V:179

    Google Scholar 

  28. Lillie JJ, Thomas MA, Denis KA, Jokerst NM, Henderson C, Ralph SE (2004) Modal pattern analysis and experimentatal investigation of multimode interferometric sensing: a path to fully integrated silicon-CMOS-based chem./bio sensors. Proc Lasers and Electro-Optics Society Annual Meeting –LEOS, pp 352–353

    Google Scholar 

  29. Heideman RG, Lambeck PV (1999) Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometric system. Sens Actuators B61:100–127

    Google Scholar 

  30. Hartman NF (1997) Integrated optic interferometric sensor. US Patent 5,623,561

    Google Scholar 

  31. Ymeti A, Kanger JS, Greve J, Lambeck PV, Wijn R, Heideman RG (2003) Development of a multichannel integrated Young interferometer. Appl Opt 42:5649–5660

    Article  CAS  Google Scholar 

  32. Ymeti A, Kanger JS, Greve J, Besselink GAJ, Lambeck PV, Wijn R, Heideman RG (2005) Integration of micro fluidics with a four-channel integrated optical young interferometer immunosensor. Biosens Bioelectron 20:1417–1421

    Article  CAS  Google Scholar 

  33. Jaio Z, DeJesus VR, Iravanian S, Campbell DP, Xu J, Vitali JA Banach K, Fahrenbach J, Dudley Jr SC (2005) A Possible Mechanism of Halocarbon-induced Cardiac Sensitization Arrhythmias. J Mol Cell Cardio 41:698–705

    Article  CAS  Google Scholar 

  34. Campbell DP, Gottfried DS, Cobb-Sullivan JM (2004) Groundwater monitoring of VOCs with an interferometric optical waveguide sensor. SPIE Proc 5586:136–143

    Article  CAS  Google Scholar 

  35. Campbell DP, Hartman NF, Walsh JL, Akki U (1994) Integrated optic gaseous NH3 sensor for agricultural applications. Proc SPIE 2345:314–323

    Google Scholar 

  36. Campbell DP, Moore JL, Cobb JM, Edwards JG (1998) Integrated optic sensor for pH and ammonia. Proc SPIE 3537B:319–327

    Google Scholar 

  37. Giuliani JF, Wohltjen H, Jarvis NL (1983) Reversible optical waveguide sensor for ammonia vapors. Opt Lett 8:54–56

    Article  CAS  Google Scholar 

  38. Munir IZ, Hu S, Dordick JS (2002) Chemoenzymatic synthesis of trinitrobenzyl halides as an alternative approach to hexanitrostilbene. Adv Synth Catal 344:1097

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel P. Campbell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Campbell, D.P. (2010). Planar-Waveguide Interferometers for Chemical Sensing. In: Zourob, M., Lakhtakia, A. (eds) Optical Guided-wave Chemical and Biosensors I. Springer Series on Chemical Sensors and Biosensors, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88242-8_3

Download citation

Publish with us

Policies and ethics