Skip to main content

Hirota’s Bilinear Method and Its Connection with Integrability

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 767))

Abstract

We give an introduction to Hirota’s bilinear method, which is particularly efficient for constructing multisoliton solutions to integrable nonlinear evolution equations. We discuss in detail how the method works for equations in the Korteweg–de Vries class and then go through some other classes of equations. Finally we discuss how the existence of multisoliton solutions can be used as an integrability condition and therefore as a method of searching for possible new integrable equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Hirota, Exact Solution of the Korteweg-de Vries Equation for Multiple Collisions of Solitons, Phys. Rev. Lett. 27, 1192–1194, 1971.

    Article  ADS  MATH  Google Scholar 

  2. R. Hirota, Exact Solution of the modified Korteweg-de Vries Equation for Multiple Collisions of Solitons, J. Phys. Soc. Japan 33, 1456–1459, 1972.

    Article  ADS  Google Scholar 

  3. R. Hirota, Exact Solution of the Sine-Gordon Equation for Multiple Collisions of Solitons, J.Phys. Soc. Japan 33, 1459–1463, 1972.

    Article  ADS  Google Scholar 

  4. R. Hirota, Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys. 14, 805–809, 1973.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. R. Hirota, A New Form of Bäcklund Transformations and Its Relation to the Inverse Scattering Problem Progr, Theor. Phys. 52, 1498–1512, 1974.

    ADS  MATH  Google Scholar 

  6. M. Jimbo and T. Miwa, Solitons and Infinite Dimensional Lie Algebras Publ. RIMS, Kyoto Univ. 19, 943–1001, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Hirota, Direct Method of Finding Exact Solutions of Nonlinear Evolution Equations, in Bäcklund Transformations, the Inverse Scattering Method, Solitons, and Their Applications, M. Miura (ed.), Lecture Notes in Mathematics, vol 515, Springer, 40–68, 1976.

    Google Scholar 

  8. R. Hirota and J. Satsuma, A Variety of Nonlinear Network Equations Generated from the Bäcklund Transformation for the Toda Lattice. Progress Theoretical Phys., Suppl. 59 64–100, 1976.

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Hirota, Direct methods in soliton theory. in Solitons, R.K. Bullough and P.J. Caudrey (eds.), Springer, 157–176, 1980.

    Google Scholar 

  10. J. Hietarinta, Hirota’s bilinear method and partial integrability, in Partially Integrable Equations in Physics, R. Conte and N. Boccara (eds.), Kluwer, 459–478, 1990.

    Google Scholar 

  11. B. Grammaticos, A. Ramani, and J. Hietarinta, Multilinear operators: the natural extension of Hirota’s bilinear formalism, Phys. Lett. A 190, 65–70, 1994.

    Article  ADS  MathSciNet  Google Scholar 

  12. J. Hietarinta, B. Grammaticos, and A. Ramani, Integrable Trilinear PDE’s, in Nonlinear Evolution Equations & Dynamical Systems, NEEDS ’94, V.G. Makhankov, A.R. Bishop and D.D. Holm (eds.), World Scientific, 54–63, 1995.

    Google Scholar 

  13. F. Kako and N. Yajima, Interaction of Ion-Acoustic Solitons in Two-Dimensional Space, J. Phys. Soc. Japan 49, 2063–2071, 1980

    Google Scholar 

  14. R. Hirota and M. Ito, Resonance of Solitons in One Dimension, J. Phys. Soc. Japan 52, 744–748, 1983

    Google Scholar 

  15. K. Ohkuma and M. Wadati, The Kadomtsev-Petviashvili Equation: the Trace Method and the Soliton Resonances, J. Phys. Soc. Japan 52, 749–760, 1983.

    Article  ADS  MathSciNet  Google Scholar 

  16. R. Hirota, Exact N-soliton solutions of wave equation of long waves in shallowwater in nonlinear lattices, J. Math. Phys. 14, 810–814, 1973.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. R. Hirota, Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys. 14, 805–809, 1973.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. R. Radhakrishnan, M. Lakshmanan and J. Hietarinta, Inelastic collision and switching of coupled bright solitons in optical fibers, Phys. Rev. E 56, 2213–2216, 1997.

    Article  ADS  Google Scholar 

  19. R. Hirota and J. Satsuma, Soliton solutions of a coupled Korteweg-de Vries equation, Phys. Lett. A 85, 407–408, 1981

    Google Scholar 

  20. M. Boiti, J.J-P. Leon, L. Martina, and F. Pempinelli, Scattering of localized solitons on the plane, Phys. Lett. A 132, 432–439, 1988.

    Article  ADS  MathSciNet  Google Scholar 

  21. A.S. Fokas and P.M. Santini, Coherent Structures in Multidimensions, Phys. Rev. Lett. 63, 1329–1333, 1989

    Google Scholar 

  22. A.S. Fokas and P.M. Santini, Dromions and a boundary value problem for the Davey-Stewartson 1 equation, Physica D 44, 99–130, 1990.

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Hietarinta and R. Hirota, Multidromion solutions to the Davey-Stewartson equation, Phys. Lett. A 145, 237–244, 1990.

    Article  ADS  MathSciNet  Google Scholar 

  24. C. Gilson and J.J.C. Nimmo, A direct method for dromion solution of the Davey- Stewartson equations and their asymptotic properties, Proc. R. Soc. Lond. A 435, 339–357, 1991.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. J. Hietarinta and J. Ruokolainen, Dromions – The movie. (video animation, see http:// users.utu.fi/hietarin/dromions) 1990.

  26. J. Hietarinta, One-dromion solutions for generic classes of equations, J, Phys. Lett. A 149, 113–118, 1990.

    Article  ADS  MathSciNet  Google Scholar 

  27. C. Gilson, Resonant behaviour in the Davey–Stewartson equation, Phys. Lett. A 161, 423–428, 1992.

    Article  ADS  MathSciNet  Google Scholar 

  28. R. Hirota and J. Satsuma, N-Soliton Solutions of Model Equations for Shallow Water Waves, J. Phys. Soc. Japan 40, 611–612, 1976

    Google Scholar 

  29. J. Satsuma and D.J. Kaup, A Bäcklund transformation for a Higher Order Korteweg-de Vries Equation, J. Phys. Soc. Japan 43, 692–697, 1977

    Google Scholar 

  30. R. Hirota, Reduction of soliton equations in bilinear form, Physica D 18, 161–170, 1986.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. J. Hietarinta, Bäcklund transformations from the bilinear viewpoint, CRM Proceedings and Lecture Notes 29 245–251, 2001.

    MathSciNet  Google Scholar 

  32. A. Newell and Z. Yunbo, The Hirota conditions, J. Math. Phys. 27, 2016–20121, 1986.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. J. Hietarinta, A search for bilinear equations passing Hirota’s three-soliton condition. I. KdV-type bilinear equations, J. Math. Phys. 28, 1732–1742, 1987.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. M. Ito, An Extension of Nonlinear Evolution Equations of the K-dV (mK-dV) Type to Higher Orders, J. Phys. Soc. Jpn. 49, 771–778, 1980.

    Article  ADS  Google Scholar 

  35. A.C. Hearn, REDUCE User’s Manual Version 3.2, 1985.

    Google Scholar 

  36. B. Grammaticos, A. Ramani, and J. Hietarinta, A search for integrable bilinear equations: the Painlevé approach, J. Math. Phys. 31, 2572–2578, 1990.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. J. Hietarinta, A search of bilinear equations passing Hirota’s three-soliton condition: II. mKdV-type bilinear equations, J. Math. Phys. 28, 2094–2101, 1987

    Google Scholar 

  38. J. Hietarinta, A search of bilinear equations passing Hirota’s three-soliton condition: III. sine-Gordon-type bilinear equations, J. Math. Phys. 28, 2586–2592, 1987.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. J. Hietarinta, Recent results from the search for bilinear equations having threesoliton solutions, in Nonlinear evolution equations: integrability and spectral methods, A. Degasperis, A.P. Fordy and M. Lakshmanan (eds.), Manchester U.P., 307–317, 1990.

    Google Scholar 

  40. J. Hietarinta, A search of bilinear equations passing Hirota’s three-soliton condition: IV. Complex bilinear equations, J. Math. Phys. 29, 628–635, 1988.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. R. Hirota and Y. Ohta, Hierarchies of Coupled Soliton Equations. I, J. Phys. Soc. Jpn. 60, 798–809, 1991.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. J.J.C. Nimmo, Darboux transformations in two dimensions. in Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, P. Clarkson (ed.), Kluwer Academic, 183–192, 1992.

    Google Scholar 

  43. V.K. Melnikov, A direct method for deriving a multisoliton solution for the problem of interaction of waves on the x, y plane, Commun. Math. Phys. 112, 639–652, 1987.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hietarinta, J. (2009). Hirota’s Bilinear Method and Its Connection with Integrability. In: Mikhailov, A.V. (eds) Integrability. Lecture Notes in Physics, vol 767. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88111-7_9

Download citation

Publish with us

Policies and ethics