Skip to main content

Evaluation of Left Ventricular Systolic Function

  • Chapter
  • First Online:

Abstract

Assessment of the left ventricular (LV) function is a very important step in the hemodynamic evaluation, not only for its contribution to diagnosis in heart and respiratory failure, but also for the guidance of therapeutic interventions.

Many indices have been developed, from eyeball evaluation of ejection fraction to very complex computations. Each has its strengths and limitations.

In routine clinical practice, LV ejection fraction (transthoracic approach, four-chamber view) or fractional area change should be measured (transesophageal or transthoracic echocardiography, short-axis view, midpapillary muscle level). Eyeball evaluation is sufficient in most cases for trained operators. If available, automated border detection may be used to facilitate measurements and reduce inter- and intraobserver variability. It should be noted that this measurement does not just estimate contractility: it is preload- and afterload sensitive. As such, it should be considered as the means to assess whether the left ventricle is adapted to the current loading conditions, with its intrinsic contractility. This measurement is, therefore, one of the most interesting indices of LV function for the intensivist.

In patients with mitral regurgitation and severe aortic regurgitation, noninvasive dP/dt measurements on regurgitant mitral flow can be used. Though less so than with other methods, these measurements are still affected by loading conditions and hence represent mostly LV contractility.

For research purposes, one may consider other indices of contractility (velocity of circumferential fiber shortening coupled with wall-stress measurement, LV hydraulic power), which are minimally affected by loading conditions. The significance of end-systolic elastance and the speckle-tracking method remains to be determined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brown J, Jenkins C, Marwick TH (2009) Use of myocardial strain to assess global left ventricular function: a comparison with cardiac magnetic resonance and 3-dimensional echocardiography. Am Heart J 157:102–105

    Article  PubMed  Google Scholar 

  2. Krenning BJ, Voormolen MM, Roelandt JR (2003) Assessment of left ventricular function by three-dimensional echocardiography. Cardiovasc Ultrasound 1:12

    Article  PubMed  Google Scholar 

  3. Naik MM, Diamond GA, Pai T et al (1995) Correspondence of left ventricular ejection fraction determinations from two-dimensional echocardiography, radionuclide angiography and contrast cineangiography. J Am Coll Cardiol 25:937–942

    Article  PubMed  CAS  Google Scholar 

  4. Kuecherer HF, Kee LL, Modin G et al (1991) Echocardiography in serial evaluation of left ventricular systolic and diastolic function: importance of image acquisition, quantitation, and physiologic variability in clinical and investigational applications. J Am Soc Echocardiogr 4:203–214

    PubMed  CAS  Google Scholar 

  5. Smith MD, MacPhail B, Harrison MR et al (1992) Value and limitations of transesophageal echocardiography in determination of left ventricular volumes and ejection fraction. J Am Coll Cardiol 19:1213–1222

    Article  PubMed  CAS  Google Scholar 

  6. Vignon P, Mentec H, Terre S et al (1994) Diagnostic accuracy and therapeutic impact of transthoracic and transesophageal echocardiography in mechanically ventilated patients in the ICU. Chest 106:1829–1834

    Article  PubMed  CAS  Google Scholar 

  7. Himelman RB, Cassidy MM, Landzberg JS et al (1988) Reproducibility of quantitative two-dimensional echocardiography. Am Heart J 115:425–431

    Article  PubMed  CAS  Google Scholar 

  8. Rahmouni HW, Ky B, Plappert T et al (2008) Clinical utility of automated assessment of left ventricular ejection fraction using artificial intelligence-assisted border detection. Am Heart J 155:562–570

    Article  PubMed  Google Scholar 

  9. Vieillard-Baron A, Charron C, Chergui K et al (2006) Bedside echocardiographic evaluation of hemodynamics in sepsis: is a qualitative evaluation sufficient? Intensive Care Med 32:1547–1552

    Article  PubMed  Google Scholar 

  10. Charron C, Prat G, Caille V et al (2007) Validation of a skills assessment scoring system for transesophageal echocardiographic monitoring of hemodynamics. Intensive Care Med 33:1712–1718

    Article  PubMed  Google Scholar 

  11. Vignon P, Dugard A, Abraham J et al (2007) Focused training for goal-oriented hand-held echocardiography performed by noncardiologist residents in the intensive care unit. Intensive Care Med 33:1795–1799

    Article  PubMed  Google Scholar 

  12. Mayo PH, Beaulieu Y, Doelken P et al (2009) American College of Chest Physicians/La Societe de Reanimation de Langue Francaise statement on competence in critical care ultrasonography. Chest 135:1050–1060

    Article  PubMed  Google Scholar 

  13. Robotham JL, Takata M, Berman M et al (1991) Ejection fraction revisited. Anesthesiology 74:172–183

    Article  PubMed  CAS  Google Scholar 

  14. Taccone FS, Lubicz B, Piagnerelli M et al (2009) Cardiogenic shock with stunned myocardium during triple-H therapy treated with intra-aortic balloon pump counterpulsation. Neurocrit Care 10:76–82

    Article  PubMed  Google Scholar 

  15. Goertz AW, Hubner C, Seefelder C et al (1994) The effect of ephedrine bolus administration on left ventricular loading and systolic performance during high thoracic epidural anesthesia combined with general anesthesia. Anesth Analg 78:101–105

    Article  PubMed  CAS  Google Scholar 

  16. Feltes TF, Pignatelli R, Kleinert S et al (1994) Quantitated left ventricular systolic mechanics in children with septic shock utilizing noninvasive wall-stress analysis. Crit Care Med 22:1647–1658

    PubMed  CAS  Google Scholar 

  17. Ruschmer RF (1964) Initial ventricular implulse: a potential key to cardiac evaluation. Circulation 29:268–283

    Google Scholar 

  18. Noble MI, Gabe IT, Trenchard D et al (1967) Blood pressure and flow in the ascending aorta of conscious dogs. Cardiovasc Res 1:9–20

    Article  PubMed  CAS  Google Scholar 

  19. Bauer F, Jones M, Shiota T et al (2002) Left ventricular outflow tract mean systolic acceleration as a surrogate for the slope of the left ventricular end-systolic pressure–volume relationship. J Am Coll Cardiol 40:1320–1327

    Article  PubMed  Google Scholar 

  20. Berk MR, Evans J, Knapp C et al (1990) Influence of alterations in loading produced by lower body negative pressure on aortic blood flow acceleration. J Am Coll Cardiol 15:1069–1074

    Article  PubMed  CAS  Google Scholar 

  21. Rhodes J, Udelson JE, Marx GR et al (1993) A new noninvasive method for the estimation of peak dP/dt. Circulation 88:2693–2699

    PubMed  CAS  Google Scholar 

  22. Rhodes J, Marx GR, Tardif JC et al (1997) Evaluation of ventricular dP/dt before and after open heart surgery using transesophageal echocardiography. Echocardiography 14:15–22

    Article  PubMed  Google Scholar 

  23. Kang HJ, Kim YJ, Sohn DW et al (2003) Prediction of postoperative left ventricular systolic function with Doppler-derived dP/dt in patients with chronic aortic regurgitation. J Am Soc Echocardiogr 16:1111–1115

    Article  PubMed  Google Scholar 

  24. Poelaert JI, Schupfer G (2005) Hemodynamic monitoring utilizing transesophageal echocardiography: the relationships among pressure, flow, and function. Chest 127:379–390

    Article  PubMed  Google Scholar 

  25. Van den Bos GC, Westerhof N, Randall OS (1982) Pulse wave reflection: can it explain the differences between systemic and pulmonary pressure and flow waves? A study in dogs. Circ Res 51:479–485

    PubMed  Google Scholar 

  26. Bilo HJ, van Schijndel RJ Strack, Schreuder WO et al (1989) Decreased reflection coefficient as a possible cause of low blood pressure in severe septicaemia. Intensive Care Med 15:137–139

    Article  PubMed  CAS  Google Scholar 

  27. Gorcsan J III, Denault A, Gasior TA et al (1994) Rapid estimation of left ventricular contractility from end-systolic relations by echocardiographic automated border detection and femoral arterial pressure. Anesthesiology 81:553–562

    Article  PubMed  Google Scholar 

  28. Cariou A, Pinsky MR, Monchi M et al (2008) Is myocardial adrenergic responsiveness depressed in human septic shock? Intensive Care Med 34:917–922

    Article  PubMed  Google Scholar 

  29. Tanabe M, Lamia B, Tanaka H et al (2008) Echocardiographic speckle tracking radial strain imaging to assess ventricular dyssynchrony in a pacing model of resynchronization therapy. J Am Soc Echocardiogr 21:1382–1388

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel De Backer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

De Backer, D. (2011). Evaluation of Left Ventricular Systolic Function. In: de Backer, D., Cholley, B., Slama, M., Vieillard-Baron, A., Vignon, P. (eds) Hemodynamic Monitoring Using Echocardiography in the Critically Ill. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87956-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87956-5_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87954-1

  • Online ISBN: 978-3-540-87956-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics