Skip to main content

Assessment of Fluid Requirements: Fluid Responsiveness

  • Chapter
  • First Online:
Book cover Hemodynamic Monitoring Using Echocardiography in the Critically Ill

Abstract

Fluid administration is the first-line therapy in many patients with circulatory failure, though many patients may not respond to it. Accordingly, it is important to determine the chances of the patient responding to fluids. Assessing fluid responsiveness with the dynamic approach is based on the Frank–Starling relationship: using either heart–lung interactions or a postural change, an acute and transient change in preload is obtained, which results in an increase in stroke volume (SV) in preload-dependent patients, while it remains unaltered in preload-independent patients. Static estimates of preload (pressures, surfaces, and volumes) are unfortunately of limited value since each patient is characterized by his or her own Frank–Starling relationship, and so it is difficult to predict the response to fluids from a given value of preload.

During mechanical ventilation, cyclic changes in respiratory pressure induce such changes in preload, resulting in cyclic changes in SV in preload-dependent patients. The commonest way to evaluate these is to measure changes in left ventricular stroke volume (SV) at the outflow tract level. Since these measurements only encompass relative changes from inspiration to expiration, measurement of the outflow tract diameter is not required. This technique can be used with both transthoracic and transesophageal echocardiography. Alternatively, one can look at respiratory variations in the superior vena cava diameter, but this can be performed only using the transesophageal approach.

In the passive leg-raising test, the change in position induces a transient increase in preload by autotransfusion of the blood in the legs, which may result in an increase in cardiac output in preload-dependent patients. In this maneuver, cardiac output is measured at the left ventricular outflow tract.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, International Surviving Sepsis Campaign Guidelines Committee, American Association of Critical-Care Nurses, American College of Chest Physicians, American College of Emergency Physicians, Canadian Critical Care Society, European Society of Clinical Microbiology and Infectious Diseases, European Society of Intensive Care Medicine, European Respiratory Society, International Sepsis Forum, Japanese Association for Acute Medicine, Japanese Society of Intensive Care Medicine, Society of Critical Care Medicine, Society of Hospital Medicine; Surgical Infection Society, World Federation of Societies of Intensive and Critical Care Medicine et al (2008) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock. Crit Care Med 36:296–327

    Article  PubMed  Google Scholar 

  2. Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121:2000–8, Review

    Article  PubMed  Google Scholar 

  3. Slama M, Masson H, Teboul JL, Arnout ML, Susic D, Frohlich E, Andrejak M (2002) Respiratory variations of aortic VTI: a new index of hypovolemia and fluid responsiveness. Am J Physiol Heart Circ Physiol 283:H1729–33

    PubMed  CAS  Google Scholar 

  4. Cholley BP, Vieillard-Baron A, Mebazaa A (2006) Echocardiography in the ICU: time for widespread use! Intensive Care Med 32:9–10

    Article  PubMed  Google Scholar 

  5. Mayo PH, Beaulieu Y, Doelken P, Feller-Kopman D, Harrod C, Kaplan A, Oropello J, Vieillard-Baron A, Axler O, Lichtenstein D, Maury E, Slama M, Vignon P (2009) American College of Chest Physicians/La Société de Réanimation de Langue Française statement on competence in critical care ultrasonography. Chest 135:1050–60

    Article  PubMed  Google Scholar 

  6. Vieillard-Baron A, Slama M, Cholley B, Janvier G, Vignon P (2008) Echocardiography in the intensive care unit: from evolution to revolution? Intensive Care Med 34:243–9

    Article  PubMed  Google Scholar 

  7. Slama MA, Novara A, Van de Putte P, Diebold B, Safavian A, Safar M, Ossart M, Fagon JY (1996) Diagnostic and therapeutic implications of transesophageal echocardiography in medical ICU patients with unexplained shock, hypoxemia, or suspected endocarditis. Intensive Care Med 22:916–22

    Article  PubMed  CAS  Google Scholar 

  8. Vignon P, Mentec H, Terré S, Gastinne H, Guéret P, Lemaire F (1994) Diagnostic accuracy and therapeutic impact of transthoracic and transesophageal echocardiography in mechanically ventilated patients in the ICU. Chest 106:1829–34

    Article  PubMed  CAS  Google Scholar 

  9. Monnet X, Teboul JL (2007) Volume responsiveness. Curr Opin Crit Care 13:549–53

    Article  PubMed  Google Scholar 

  10. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–75

    Article  PubMed  CAS  Google Scholar 

  11. Jardin F, Vieillard-Baron A (2006) Ultrasonographic examination of the venae cavae. Intensive Care Med 32:203–6

    Article  PubMed  Google Scholar 

  12. Mintz GS, Kotler MN, Parry WR, Iskandrian AS, Kane SA (1981) Real-time inferior vena caval ultrasonography: normal and abnormal findings and its use in assessing right-heart function. Circulation 64:1018–25

    PubMed  CAS  Google Scholar 

  13. Brennan JM, Blair JE, Goonewardena S, Ronan A, Shah D, Vasaiwala S, Kirkpatrick JN, Spencer KT (2007) Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr 20:857–61

    Article  PubMed  Google Scholar 

  14. Jue J, Chung W, Schiller NB (1992) Does inferior vena cava size predict right atrial pressures in patients receiving mechanical ventilation? J Am Soc Echocardiogr 5:613–9

    PubMed  CAS  Google Scholar 

  15. Feissel M, Michard F, Faller JP, Teboul JL (2004) The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 30:1834–7

    Article  PubMed  Google Scholar 

  16. Vignon P, AitHssain A, François B, Preux PM, Pichon N, Clavel M, Frat JP, Gastinne H (2008) Echocardiographic assessment of pulmonary artery occlusion pressure in ventilated patients: a transoesophageal study. Crit Care 12:R18

    Article  PubMed  Google Scholar 

  17. Combes A, Arnoult F, Trouillet JL (2004) Tissue Doppler imaging estimation of pulmonary artery occlusion pressure in ICU patients. Intensive Care Med 30:75–81

    Article  PubMed  Google Scholar 

  18. Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1313–21

    Article  PubMed  CAS  Google Scholar 

  19. Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL (2001) Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 119:867–73

    Article  PubMed  CAS  Google Scholar 

  20. Kumar A, Anel R, Bunnell E, Habet K, Zanotti S, Marshall S, Neumann A, Ali A, Cheang M, Kavinsky C, Parrillo JE (2004) Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 32:691–9

    Article  PubMed  Google Scholar 

  21. Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL (2001) Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 119:867–73

    Article  PubMed  CAS  Google Scholar 

  22. Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A, Jardin F (2004) Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30:1734–9

    PubMed  Google Scholar 

  23. Barbier C, Loubières Y, Schmit C, Hayon J, Ricôme JL, Jardin F, Vieillard-Baron A (2004) Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med 30:1740–6

    PubMed  Google Scholar 

  24. Vallée F, Richard JC, Mari A, Gallas T, Arsac E, Verlaan PS, Chousterman B, Samii K, Genestal M, Fourcade O (2009) Pulse pressure variations adjusted by alveolar driving pressure to assess fluid responsiveness. Intensive Care Med 35:1004–10

    Article  PubMed  Google Scholar 

  25. Mahjoub Y, Pila C, Friggeri A, Zogheib E, Lobjoie E, Tinturier F, Galy C, Slama M, Dupont H (2009) Assessing fluid responsiveness in critically ill patients: false-positive pulse pressure variation is detected by Doppler echocardiographic evaluation of right ventricle. Crit Care Med 37:2570–5

    Google Scholar 

  26. Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul JL (2009) Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med 37:951–6

    Article  PubMed  Google Scholar 

  27. Maizel J, Airapetian N, Lorne E, Tribouilloy C, Massy Z, Slama M (2007) Diagnosis of central hypovolemia by using passive leg raising. Intensive Care Med 33:1133–8

    Article  PubMed  Google Scholar 

  28. Lamia B, Ochagavia A, Monnet X, Chemla D, Richard C, Teboul JL (2007) Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Med 33:1125–32

    Article  PubMed  Google Scholar 

  29. Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL (2006) Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med 34:1402–7

    Article  PubMed  Google Scholar 

  30. Jabot J, Teboul JL, Richard C, Monnet X (2009) Passive leg raising for predicting fluid responsiveness: importance of the postural change. Intensive Care Med 35:85–90

    Article  PubMed  Google Scholar 

  31. Renner J, Meybohm P, Hanss R, Gruenewald M, Scholz J, Bein B (2009) Effects of norepinephrine on dynamic variables of fluid responsiveness during hemorrhage and after resuscitation in a pediatric porcine model. Paediatr Anaesth 19:688–94

    Article  PubMed  Google Scholar 

  32. Sakka SG, Becher L, Kozieras J, van Hout N (2009) Effects of changes in blood pressure and airway pressures on parameters of fluid responsiveness. Eur J Anaesthesiol 26:322–7

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Slama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Slama, M., Maizel, J. (2011). Assessment of Fluid Requirements: Fluid Responsiveness. In: de Backer, D., Cholley, B., Slama, M., Vieillard-Baron, A., Vignon, P. (eds) Hemodynamic Monitoring Using Echocardiography in the Critically Ill. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87956-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87956-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87954-1

  • Online ISBN: 978-3-540-87956-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics