Skip to main content

Heart–Lung Interactions in Mechanical Ventilation

  • Chapter
  • First Online:
Hemodynamic Monitoring Using Echocardiography in the Critically Ill
  • 3850 Accesses

Abstract

Understanding heart–lung interaction is critical for hemodynamic evaluation. Since the heart is in the thoracic cavity, it is subject to cyclic changes in airway pressure induced by ventilation. These cyclic changes in airway pressure induce cyclic changes in right and left ventricular (LV) preload and afterload. These occur both in spontaneous ventilation (negative airway pressure) and during mechanical ventilation (positive airway pressure). The cyclic changes have a major impact during cardiac tamponade, right ventricular (RV) failure, and preload dependency. These basic physiological concepts help the clinician differentiate between pericardial effusion without hemodynamic compromise and tamponade, between RV dysfunction and RV failure, and also to detect fluid responsiveness.

Heart–lung interactions can be used to predict fluid responsiveness in mechanical ventilation. During inspiration, the increase in pleural pressure increases LV preload as a result of the purge effect on pulmonary veins, decreases RV preload and increases RV afterload, which results in a decrease in RV stroke volume. After a few beats, this results in a decreased LV preload. In volume-responsive patients, these cyclic changes in preload result in cyclic changes in stroke volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinsky MR, Payen D (2005) Functional hemodynamic monitoring. Crit Care 9:566–72

    Article  PubMed  Google Scholar 

  2. Massumi R, Mason D, Zakauddin V, Zelis R, Otero J, Amsterdam E (1976) Reversed pulsus paradoxus. N Engl J Med 289:1272–1275

    Article  Google Scholar 

  3. Perel A, Pizov R, Cotev S (1987) Systolic blood pressure variations is a sensitive indicator of hypovolemia in ventilated dog subject to graded hemorrhage. Anesthesiology 67:498–502

    Article  PubMed  CAS  Google Scholar 

  4. Milnor W, Jose A, McGaff C (1960) Pulmonary vascular volume, resistance and compliance in man. Circulation 22:130

    PubMed  CAS  Google Scholar 

  5. Roughton F (1945) Average time spent by blood in the human lung capillary and its relation to the rates of CO uptake and elimination in man. Am J Physiol 143:621

    CAS  Google Scholar 

  6. Versprille A (1990) The pulmonary circulation during mechanical ventilation. Acta Anaesthesiol Scand 34:51–62

    Article  Google Scholar 

  7. Scharf SM, Caldini P, Ingram RH (1977) Cardiovascular effect of increasing airway pressure in the dog. Am J Physiol 232:H35–43

    PubMed  CAS  Google Scholar 

  8. Guyton A, Lindsey A, Abernathy B, Richardson T (1957) Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol 189:609–615

    PubMed  CAS  Google Scholar 

  9. Sarnoff SJ, Berglund E (1954) Ventricular function. I. Starling’s law of the heart studied by means of simultaneous right and left ventricular function curves in the dog. Circulation 9:706–18

    PubMed  CAS  Google Scholar 

  10. Vieillard-Baron A, Augarde R, Prin S, Page B, Beauchet A, Jardin F (2001) Influence of superior vena caval zone conditions on cyclic changes in right ventricular outflow during respiratory support. Anesthesiology 95:1083–1088

    Article  PubMed  CAS  Google Scholar 

  11. Jardin F, Vieillard-Baron A (2006) Ultrasonographic examination of the venae cavae. Intensive Care Med 32:203–6

    Article  PubMed  Google Scholar 

  12. Vieillard-Baron A, Chergui K, Augarde R, Prin S, Page B, Beauchet A et al (2003) Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am J Respir Crit Care Med 168:671–6

    Article  PubMed  Google Scholar 

  13. Whittenberger JL, McGregor M, Berglund E, Borst HG (1960) Influence of state of inflation of the lung on pulmonary vascular resistance. J Appl Physiol 15:878–882

    PubMed  CAS  Google Scholar 

  14. West J, Dollery C, Naimark A (1964) Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol 19:713–724

    PubMed  CAS  Google Scholar 

  15. Jardin F, Brun-Ney D, Cazaux P, Dubourg O, Hardy A, Bourdarias JP (1989) Relation between transpulmonary pressure and right ventricular isovolumetric pressure change during respiratory support. Cathe Cardiovasc Diagn 16:215–20

    Article  CAS  Google Scholar 

  16. Vieillard-Baron A, Loubières Y, Schmitt JM, Page B, Dubourg O, Jardin F (1999) Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol 87:1644–1650

    PubMed  CAS  Google Scholar 

  17. Jardin F, Vieillard-Baron A (2007) Is there a safe plateau in ARDS? The right heart only knows. Intensive Care Med 33:444–7

    Article  PubMed  Google Scholar 

  18. Jardin F, Genevray B, Brun-Ney D, Bourdarias JP (1985) Influence of lung and chest wall compliances on transmission of airway pressure to the pleural space in critically ill patients. Chest 88:653–8

    Article  PubMed  CAS  Google Scholar 

  19. Jardin F, Farcot JC, Gueret P, Prost JF, Ozier Y, Bourdarias JP (1983) Cyclic changes in arterial pulse during respiratory support. Circulation 68:266–274

    PubMed  CAS  Google Scholar 

  20. Buda A, Pinsky M, Ingels N, Daughters G, Stinson E, Alderman E (1979) Effect of intrathoracic pressure on left ventricular performance. N Engl J Med 301:453–459

    Article  PubMed  CAS  Google Scholar 

  21. Pinsky M, Summer W, Wise R, Permutt S, Bromberger-Barnea B (1983) Augmentation of cardiac function by elevation of intra-thoracic pressure. J Appl Physiol 54:950–955

    PubMed  CAS  Google Scholar 

  22. McGregor M (1979) Pulsus paradoxus. N Engl J Med 301:480–482

    Article  PubMed  CAS  Google Scholar 

  23. Pizov R, Ya’ari Y, Perel A (1989) The arterial pressure waveform during acute ventricular failure and synchronized external chest compression. Anesth Analg 68:150–6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Vieillard-Baron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Vieillard-Baron, A. (2011). Heart–Lung Interactions in Mechanical Ventilation. In: de Backer, D., Cholley, B., Slama, M., Vieillard-Baron, A., Vignon, P. (eds) Hemodynamic Monitoring Using Echocardiography in the Critically Ill. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87956-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87956-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87954-1

  • Online ISBN: 978-3-540-87956-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics