Skip to main content

Standard Approaches to Network Structure: Block Modeling

  • Chapter
Book cover Structure in Complex Networks

Part of the book series: Lecture Notes in Physics ((LNP,volume 766))

  • 1268 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45(2):167–256, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Guimera and L. A. N. Amaral. Functional cartography of complex metabolic networks. Nature, 433:895–900, 2005.

    Article  ADS  Google Scholar 

  3. H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. -L. Barabàsiasi. The large-scale organization of metabolic networks. Nature, 407:651–654, 2000.

    Article  ADS  Google Scholar 

  4. A. -L. Barabási and Z. N. Oltvai. Network biology: Understanding the cells’s functional organization. Nature Reviews Genetics, 5:101–113, 2004.

    Article  Google Scholar 

  5. H. Jeong, S. Mason, A. -L. Barabàsi, and Z. N. Oltvai. Lethality and centrality in protein networks. Nature, 41:41–42, 2001.

    Article  ADS  Google Scholar 

  6. R. Guimera, M. Sales-Pardo, and L. A. N. Amaral. Classes of complex networks. Nature Physics, 3:63–69, 2007.

    Article  ADS  Google Scholar 

  7. D. M. Wilkinson and B. A. Huberman. A method for finding communities of related genes. Proceedings of the National Academy of Sciences of the United States of America, 101:5241–5248, 2004.

    Article  ADS  Google Scholar 

  8. G. Palla, I. Derenyi, I. Farkas, and T. Vicsek. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435:814, 2005.

    Google Scholar 

  9. J. Reichardt and S. Bornholdt. Clustering of sparse data via network communities – a prototype study of a large online market. Journal of Statistical Mechanics, P06016, 2007.

    Google Scholar 

  10. S. P. Borgatti and M. G. Everett. Notions of position in social network analysis. Sociological Methodology, 22:1–35, 1992.

    Article  Google Scholar 

  11. S. Wasserman and K. Faust. Social Network Analysis. Cambridge University Press, New York, 1994.

    Google Scholar 

  12. F. Lorrain and H. C. White. Structural equivalence of individuals in social networks. The Journal of mathematical sociology, 1:49–80, 1971.

    Article  Google Scholar 

  13. D. R. White and K. P. Reitz. Graph and semigroup homomorphisms. Social Networks, 5:193–234, 1983.

    Article  MathSciNet  Google Scholar 

  14. M. G. Everett and S. P. Borgatti. Regular equivalence: general theory. The Journal of Mathematical Sociology, 19:29–52, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  15. P. Doreian, V. Batagelj, and A. Ferligoj. Generalized Blockmodeling. Cambridge University Press, New York, 2005.

    Google Scholar 

  16. M. Mcperson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27:415:44, 2001.

    Google Scholar 

  17. M. Girvan and M. E. J. Newman. Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 99(12):7821–7826, 2002.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. W. Zachary. An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33:452–473, 1977.

    Google Scholar 

  19. M. E. J. Newman. Detecting community structure in networks. European Physical Journal B, 38:321, 2004.

    Article  ADS  Google Scholar 

  20. L. Danon, J. Dutch, A. Arenas, and A. Diaz-Guilera. Comparing community structure indentification. Journal of Statistical Mechanics, P09008, 2005.

    Google Scholar 

  21. F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defining and identifying communities in networks. Proceedings of the National Academy of Sciences of the United States of America, 101:2658, 2004.

    Article  ADS  Google Scholar 

  22. I. Derényi, G. Palla, and T. Vicsek. Clique percolation in random networks. Physical Review Letters, 94:160202, 2005.

    Article  ADS  Google Scholar 

  23. M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical Review E, 69:026113, 2004.

    Article  ADS  Google Scholar 

  24. L. Kaufman and P. J. Rousseeuw. Finding Groups in Data:An Introduction to Cluster Analysis. Wiley-Interscience, New York, 1990.

    Google Scholar 

  25. B.S. Everitt, S. Landau, and M. Leese. Cluster Analysis. Arnold, London, 4 edition, 2001.

    MATH  Google Scholar 

  26. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3):264–323, 1999.

    Article  Google Scholar 

  27. B. Kernighan and S. Lin. An effective heuristic procedure for partitioning graphs. The Bell System Technical Journal, 29:291–307, 1970.

    Google Scholar 

  28. C. Fiduccia and R. Mattheyses. A linear time heuristic for improving network partitions. In Proceedings of the 19th Design Automation Confrence, pp. 175–181, 1982.

    Google Scholar 

  29. C. -K. Cheng and Y. A. Wei. An improved two-way partitioning algorithm with stable performance. IEEE Transactions on Computer-Aided Design, Integrated Circuits Systems, 10:1502–1511, 1991.

    Article  Google Scholar 

  30. L. Hagen and A. B. Kahng. New spectral methods for ratio cut partitioning and clustering. IEEE Transactions on Computer-Aided Design, 11:1074–1085, 1992.

    Article  Google Scholar 

  31. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

    Article  Google Scholar 

  32. Ch. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max cut algorithm for graph partioning and data clustering. In Proceedings of ICDM 2001, pp. 107–114, 2001.

    Google Scholar 

  33. J. R. Tyler, D. M. Wilkinson, and B. A. Huberman. Email as spectroscopy: automated discovery of community structure within organisations. In International Conference on Communities and Technologies, Amsterdam, The Netherlands, 2003.

    Google Scholar 

  34. M. E. J. Newman. A measure of betweenness centrality based on random walks. Social Networks, 27(1), 39–54, 2005.

    Article  ADS  Google Scholar 

  35. F. Wu and B. A. Huberman. Finding communities in linear time: a physics approach. European Physical Journal B, 38:331, 2004.

    Article  ADS  Google Scholar 

  36. M. E. J. Newman. Fast algorithm for detecting community structure in networks. Physical Review E, 69:066133, 2004.

    Article  ADS  Google Scholar 

  37. A. Arenas, A. D’iaz-Guilera, and C. J. Pérez-Vicente. Synchronization reveals topological scales in complex networks. Physical Review Letters, 96:114102, 2006.

    Article  ADS  Google Scholar 

  38. M. Blatt, S. Wiseman, and E. Domany. Super-paramagnetic clustering of data. Physical Review Letters, 76:3251–3254, 1996.

    Article  ADS  Google Scholar 

  39. S. Wiseman, M. Blatt, and E. Domany. Super-paramagnetic clustering of data. Physical Review E, 57, 3767, 1998.

    Article  ADS  Google Scholar 

  40. E. Domany. Cluster analysis of gene expression data. Journal of Statistical Mechanics, 110(3–6):1117–1139, 2003.

    MATH  Google Scholar 

  41. K. A. Eriksen, I. Simonsen, S. Maslov, and K. Sneppen. Modularity and extreme edges of the internet. Physical Review Letters, 90(14), 148701, 2003.

    Google Scholar 

  42. I. Somonsen, K. A. Eriksen, S. Maslov, and K. Sneppen. Diffusion on complex networks: a way to probe their large scale topological structures. Physica A, 336:163, 2004.

    Article  ADS  Google Scholar 

  43. S. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht, The Netherlands, 2000.

    Google Scholar 

  44. H. Zhou. Distance, dissimilarity index, and network community structure. Physical Review E, 67: 067907, 2003

    Google Scholar 

  45. H. Zhou and R. Lipowsky. Network Brownian Motion: A New Method to Measure Vertex-Vertex Proximity an to Identify Communities and Subcommunities, pp. 1062–1069. Springer-Verlag, Berlin Heidelberg, 2004.

    Google Scholar 

  46. H. Zhou. Network landscape from a brownian particle’s perspective. Physical Review E, 67:041908, 2003.

    Article  ADS  Google Scholar 

  47. L. Donetti and M. A. Munoz. Detecting network communities: a new and systematic approach. Journal of Statistical Mechanics: Theory and Experiment, P10012, 2004.

    Google Scholar 

  48. C. H. Papadimitriou. Combinatorial Optimization: Algorithms and Complexity. Dover Publications, New York, 1998.

    MATH  Google Scholar 

  49. R. Guimera, M. Sales-Pardo, and L. N. Amaral. Modularity from fluctuations in random graphs and complex networks. Physical Review E, 70:025101(R), 2004.

    Article  ADS  Google Scholar 

  50. C. P. Massen and J. P. K. Doye. Identifying communities within energy landscapes. Physical Review E, 71:046101, 2005.

    Article  ADS  MathSciNet  Google Scholar 

  51. S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by simulated annealing. Science, 220:671–680, 1983.

    Article  ADS  MathSciNet  Google Scholar 

  52. J. Duch and A. Arenas. Community detection in complex networks using extremal optimization. Physical Review E, 72:027104, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reichardt, J. (2009). Standard Approaches to Network Structure: Block Modeling. In: Structure in Complex Networks. Lecture Notes in Physics, vol 766. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87833-9_2

Download citation

Publish with us

Policies and ethics