Skip to main content

Tikhonov Regularization Parameter in Reproducing Kernel Hilbert Spaces with Respect to the Sensitivity of the Solution

  • Conference paper
  • 2023 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5163))

Abstract

In our paper, we consider Tikhonov regularization in the reproducing Kernel Hilbert Spaces. In this space we derive upper and lower bound of the interval which contains the optimal value of Tikhonov regularization parameter with respect to the sensitivity of the solution without computing the singular values of the corresponding matrix. For the case of normalized kernel, we give an explicit formula for the optimal regularization parameter with respect to the sensitivity of the solution which needs only the knowledge of the minimal singular value of the corresponding matrix.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertero, M.: Linear inverse and ill-posed problems. Advances in Electronic and Electron Physics 75, 1–120 (1989)

    Google Scholar 

  2. Cucker, F., Smale, S.: Best Choices for Regularization Parameters in Learning Theory: On the Bias-Variance Problem. Found. Comput. Math. 2, 413–428 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chang, C.-H., Ha, C.-W.: On eigenvalues of differentiable positive definite kernels. Integr. Equ. Oper. Theory 33, 1–7 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215–223 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hansen, P.C.: Rank-Defficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia (1997)

    Google Scholar 

  6. Kolotilina, L.Y.: Bounds for the singular values of a matrix involving its sparsity patterns. Journal of Mathematical Sciences 137(3) (2006)

    Google Scholar 

  7. Kůrková, V.: Learning from data as an inverse problem. In: Antoch, J. (ed.) Proceedings of COMPSTAT 2004, pp. 1377–1384. Physica-Verlag, Heidelberg (2004)

    Google Scholar 

  8. Kůrková, V.: Supervised learning with generalization as an inverse problem. Logic Journal of IGPL 13(5), 551–559 (2005)

    Article  MATH  Google Scholar 

  9. Kůrková, V.: Supervised learning as an inverse problem, Technical report ICS AS CR (2004), http://www.cs.cas.cz/research/library/

  10. Morozov, V.A.: On the solution of functional equations by the method of regularization. Soviet Math. Dokl. 7, 414–417 (1966)

    MATH  MathSciNet  Google Scholar 

  11. Parlett, B.N.: The Symmetric Eigenvalue Problem, p. 357. SIAM, Philadelpia (1998)

    MATH  Google Scholar 

  12. Piazza, G., Politi, T.: An upper bound for the condition number of a matrix in spectral norm. Journal of Computational and Applied Mathematics 143, 141–144 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Poggio, T., Girosi, E.: Regularization algorithms for learning that are equivalent to multilayer networks. Science 247, 978–982 (1990)

    Article  MathSciNet  Google Scholar 

  14. Reginska, T.: Regularization of discrete ill-posed problems. BIT 44(1), 119–133 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Temam, R.: Numerical Analysis. D. Reidel Publishing Company (1973)

    Google Scholar 

  16. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-posed Problems. W.H. Winston, Washington (1977)

    MATH  Google Scholar 

  17. Weiss, Y.: Segmentation using eigenvectors: A unifying view. In: Proceedings IEEE International Conference on Computer Vision, vol. 9, pp. 975–982. IEEE Press, Piscataway (1999)

    Chapter  Google Scholar 

  18. Wilkinson, J.H.: The algebraic eigenvalue problem. Monographs on Numerical Analysis, p. 191. Oxford University Press, Oxford (1965)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hlaváčková-Schindler, K. (2008). Tikhonov Regularization Parameter in Reproducing Kernel Hilbert Spaces with Respect to the Sensitivity of the Solution. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87536-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87536-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87535-2

  • Online ISBN: 978-3-540-87536-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics