Skip to main content

Quadratically Constrained Quadratic Programming for Subspace Selection in Kernel Regression Estimation

  • Conference paper
Book cover Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5163))

Included in the following conference series:

Abstract

In this contribution we consider the problem of regression estimation. We elaborate on a framework based on functional analysis giving rise to structured models in the context of reproducing kernel Hilbert spaces. In this setting the task of input selection is converted into the task of selecting functional components depending on one (or more) inputs. In turn the process of learning with embedded selection of such components can be formalized as a convex-concave problem. This results in a practical algorithm that can be implemented as a quadratically constrained quadratic programming (QCQP) optimization problem. We further investigate the mechanism of selection for the class of linear functions, establishing a relationship with LASSO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pelckmans, K., Goethals, I., De Brabanter, J., Suykens, J., De Moor, B.: Componentwise Least Squares Support Vector Machines. In: Wang, L. (ed.) Support Vector Machines: Theory and Applications, pp. 77–98. Springer, Heidelberg (2005)

    Google Scholar 

  2. Tibshirani, R.: Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996)

    MATH  MathSciNet  Google Scholar 

  3. Chen, S.: Basis Pursuit. PhD thesis, Department of Statistics, Stanford University (November 1995)

    Google Scholar 

  4. Lanckriet, G., Cristianini, N., Bartlett, P., El Ghaoui, L., Jordan, M.: Learning the Kernel Matrix with Semidefinite Programming. The Journal of Machine Learning Research 5, 27–72 (2004)

    Google Scholar 

  5. Tsang, I.: Efficient hyperkernel learning using second-order cone programming. IEEE transactions on neural networks 17(1), 48–58 (2006)

    Article  MathSciNet  Google Scholar 

  6. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. Society for Industrial Mathematics (2001)

    Google Scholar 

  7. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  8. Cucker, F., Zhou, D.: Learning Theory: An Approximation Theory Viewpoint (Cambridge Monographs on Applied & Computational Mathematics). Cambridge University Press, New York (2007)

    MATH  Google Scholar 

  9. Aronszajn, N.: Theory of reproducing kernels. Transactions of the American Mathematical Society 68, 337–404 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  10. Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer Academic Publishers, Dordrecht (2004)

    Google Scholar 

  11. Wahba, G.: Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59. SIAM, Philadelphia (1990)

    MATH  Google Scholar 

  12. Gu, C.: Smoothing spline ANOVA models. Series in Statistics (2002)

    Google Scholar 

  13. Chen, Z.: Fitting Multivariate Regression Functions by Interaction Spline Models. J. of the Royal Statistical Society. Series B (Methodological) 55(2), 473–491 (1993)

    MATH  Google Scholar 

  14. Light, W., Cheney, E.: Approximation theory in tensor product spaces. Lecture Notes in Math., vol. 1169 (1985)

    Google Scholar 

  15. Takemura, A.: Tensor Analysis of ANOVA Decomposition. Journal of the American Statistical Association 78(384), 894–900 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Huang, J.: Functional ANOVA models for generalized regression. J. Multivariate Analysis 67, 49–71 (1998)

    Article  MATH  Google Scholar 

  17. Lin, Y.: Tensor Product Space ANOVA Models. The Annals of Statistics 28(3), 734–755 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Grant, M., Boyd, S., Ye, Y.: CVX: Matlab Software for Disciplined Convex Programming (2006)

    Google Scholar 

  19. Donoho, D., Johnstone, J.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (2003)

    Article  MathSciNet  Google Scholar 

  20. Miller, A.: Subset Selection in Regression. CRC Press, Boca Raton (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Signoretto, M., Pelckmans, K., Suykens, J.A.K. (2008). Quadratically Constrained Quadratic Programming for Subspace Selection in Kernel Regression Estimation. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87536-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87536-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87535-2

  • Online ISBN: 978-3-540-87536-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics