Skip to main content

The Secretome of Plant-Associated Fungi and Oomycetes

  • Chapter
Plant Relationships

Part of the book series: The Mycota ((MYCOTA,volume 5))

Abstract

The secretome of plant-associated fungi and oomycetes has been the subject of much research since the publication about 10 years ago of the first edition of “The Mycota: Plant Relationships”. The concept that filamentous microbes require secreted proteins to alter their environment and the organisms they colonize is not particularly novel, but technology has matured to the point where it is nowadays possible to generate catalogs of the complete set of secreted proteins (the secretome) for a given organism. This has been driven by the coming of age of genome sequencing coupled with robust computational predictions of secretion signals. This chapter surveys some of the key concepts and findings that recently emerged from the study of the fungal and oomycete secretome, with an emphasis on effector proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bhattacharjee S, Hiller NL, Liolios K, Win J, Kanneganti TD, Young C, Kamoun S, Haldar, K (2006) The malarial host-targeting signal is conserved in the Irish potato famine pathogen. PLoS Pathog 2:e50

    Article  PubMed  Google Scholar 

  • Birch PR, Rehmany AP, Pritchard L, Kamoun S, Beynon JL (2006) Trafficking arms: oomycete effectors enter host plant cells. Trends Microbiol 14:8-11

    Article  PubMed  CAS  Google Scholar 

  • Bishop JG, Ripoll DR, Bashir S, Damasceno CM, Seeds JD, Rose JK (2004) Selection on Glycine beta-1,3- endoglucanase genes differentially inhibited by a Phytophthora glucanase inhibitor protein. Genetics 169:1009-1019

    Article  PubMed  Google Scholar 

  • Bos JI, Kanneganti TD, Young C, Cakir C, Huitema E, Win, J, Armstrong MR, Birch PR, Kamoun S (2006) The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hyper- sensitivity and suppress INF1-induced cell death in Nicotiana benthamiana. Plant J 48:165-176

    Article  PubMed  CAS  Google Scholar 

  • Catanzariti AM, Dodds PN, Lawrence GJ, Ayliffe MA, Ellis JG (2006) Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elici- tors. Plant Cell 18:243-256

    Article  PubMed  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host- microbe interactions: shaping the evolution of the plant immune response. Cell 124:803-814

    Article  PubMed  CAS  Google Scholar 

  • Dawkins R (1999) The extended phenotype: the long reach of the gene. Oxford University Press, Oxford Dodds PN, Lawrence GJ, Catanzariti AM, Ayliffe MA, Ellis JG (2004) The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell 16:755-768

    Article  Google Scholar 

  • Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CI, Ayliffe MA, Kobe B, Ellis JG (2006) Direct protein interaction underlies gene-for-gene specificity and coevolu- tion of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci USA 103:8888-8893

    Article  PubMed  CAS  Google Scholar 

  • Freitas-Junior LH, Bottius E, Pirrit LA, Deitsch KW, Scheidig C, Guinet F, Nehrbass U, Wellems TE, Scherf A (2000) Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum. Nature 407:1018-1022

    Article  PubMed  CAS  Google Scholar 

  • Gout L, Fudal I, Kuhn ML, Blaise F, Eckert M, Cattolico L, Balesdent MH, Rouxel, T (2006) Lost in the middle of nowhere: the AvrLml avirulence gene of the Dothide- omycete Leptosphaeria maculans. Mol Microbiol 60:67-80

    Article  PubMed  CAS  Google Scholar 

  • Haldar K, Kamoun S, Hiller NL, Bhattacharje S, van Ooij C (2006) Common infection strategies of pathogenic eukaryotes. Nat Rev Microbiol 4:922-931

    Article  PubMed  CAS  Google Scholar 

  • Hiller NL, Bhattacharjee S, van Ooij C, Liolios K, Harrison T, Lopez-Estrano C, Haldar K (2004) A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306:1934-1937

    Article  PubMed  CAS  Google Scholar 

  • Huitema E, Bos JIB, Tian M, Win J, Waugh ME, Kamoun S (2004) Linking sequence to phenotype in Phytophthora -plant interactions. Trends Microbiol 12:193-200

    Article  PubMed  CAS  Google Scholar 

  • Jamir Y, Guo M, Oh HS, Petnicki-Ocwieja T, Chen S, Tang X, Dickman MB, Collmer A, Alfano JR (2004) Identification of Pseudomonas syringae type III effectors that can suppress programmed cell death in plants and yeast. Plant J 37:554-565

    Article  PubMed  CAS  Google Scholar 

  • Janjusevic R, Abramovitch RB, Martin GB, Stebbins CE (2006) A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 311:222-226

    Article  PubMed  CAS  Google Scholar 

  • Jiang RH, Weide R, van de Vondervoort PJ, Govers F (2006) Amplification generates modular diversity at an avir- ulence locus in the pathogen Phytophthora. Genome Res 16:827-840

    Article  PubMed  CAS  Google Scholar 

  • Joosten MHAJ, Vogelsang R, Cozijnsen TJ, Verberne MC, de Wit PJGM (1997) The biotrophic fungus Cladosporium fulvum circumvents Cf-4 mediated resistance by producing unstable AVR4 elicitors. Plant Cell 9:367-379

    Article  PubMed  CAS  Google Scholar 

  • Kamoun S (2003) Molecular genetics of pathogenic oomycetes. Eukaryot Cell 2:191-199 Kamoun S (2006) A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 44:41-60

    Google Scholar 

  • Kamoun S (2007) Groovy times: filamentous pathogen effectors revealed. Curr Opin Plant Biol 10:358-365 Kanneganti T-D, Bai X, Tsai C-W, Win J, Meulia T, Goodin M, Kamoun S, Hogenhout SA (2007) A functional genetic assay for nuclear trafficking in plants. Plant J 50:149-158

    Google Scholar 

  • Kemen E, Kemen AC, Rafiqi M, Hempel U, Mendgen K, Hahn M, Voegele RT (2005) Identification of a protein from rust fungi

    Google Scholar 

  • transferred from haustoria into infected plant cells. Mol Plant-Microbe Interact 18:1130-1139

    Google Scholar 

  • Kruger J, Thomas CM, Golstein C, Dixon MS, Smoker M, Tang S, Mulder L, Jones JD (2002) A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296:744-747

    Article  PubMed  Google Scholar 

  • Lahaye T, Bonas U (2001) Molecular secrets of bacterial type III effector proteins. Trends Plant Sci 6:479-485

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Kelley BS, Damasceno CM, St John B, Kim BS, Kim BD, Rose JK (2006) A functional screen to characterize the secretomes of eukaryotic pathogens and their hosts in planta. Mol Plant-Microbe Interact 19:1368-1377

    Article  PubMed  CAS  Google Scholar 

  • Marti M, Good RT, Rug M, Knuepfer E, Cowman AF (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306:1930-1933

    Article  PubMed  CAS  Google Scholar 

  • Menne KM, Hermjakob H, Apweiler R (2000) A comparison of signal sequence prediction methods using a test set of signal peptides. Bioinformatics l6:74l-742

    Google Scholar 

  • Nielsen H, Brunak S, von Heijne G (l999) Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng l2:3-9 O'Connell RJ, Panstruga R (2006) Tete a tete inside a plant cell: establishing compatibility between plants and bio- trophic fungi and oomycetes. New Phytol l7l:699-7l8

    Google Scholar 

  • Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B (2000) A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell l2:20l9-2032

    Google Scholar 

  • Palma K, Zhang Y, Li X (2005) An importin alpha homolog, MOS6, plays an important role in plant innate immunity. Curr Biol l5:ll29-ll35

    Google Scholar 

  • Panstruga R (2003) Establishing compatibility between plants and obligate biotrophic pathogens. Curr Opin Plant Biol 6:320-326

    Article  PubMed  CAS  Google Scholar 

  • Rehmany AP, Gordon A, Rose LE, Allen RL, Armstrong MR, Whisson SC, Kamoun S, Tyler BM, Birch PR, Beynon JL (2005)

    Google Scholar 

  • Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell l7:l839-l850

    Google Scholar 

  • Rep M, van der Does HC, Meijer M, van Wijk R, Houterman PM, Dekker HL, de Koster CG, Cornelissen BJ (2004) A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Mol Microbiol 53:l373-l383

    Article  Google Scholar 

  • Ridout CJ, Skamnioti P, Porritt O, Sacristan S, Jones JD, Brown JK (2006) Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. Plant Cell l8:2402-24l4

    Google Scholar 

  • Rooney HC, Van't Klooster JW, van der Hoorn RA, Joosten MH, Jones JD, de Wit PJ (2005) Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-de- pendent disease resistance. Science 308:l783-l786

    Article  Google Scholar 

  • Rose JK, Ham KS, Darvill AG, Albersheim P (2002) Molecular cloning and characterization of glucanase inhibitor proteins: coevolution of a counterdefense mechanism by plant pathogens. Plant Cell l4:l329-l345

    Google Scholar 

  • Schneider G, Fechner U (2004) Advances in the prediction of protein targeting signals. Proteomics 4:l57l-l580

    Article  Google Scholar 

  • Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P (2006) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 3l5:l098- ll03

    Google Scholar 

  • Tian M, Huitema E, da Cunha L, Torto-Alalibo T, Kamoun S (2004) A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. J Biol Chem 279:26370-26377

    Article  PubMed  CAS  Google Scholar 

  • Tian M, Benedetti B, Kamoun S (2005) A Second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato. Plant Physiol l38:l785-l793

    Google Scholar 

  • Tian M, Win J, Song J, van der Hoorn R, van der Knaap E, Kamoun S (2007) A Phytophthora infestans cystatin- like protein targets a novel tomato papain-like apo- plastic protease. Plant Physiol l43:364-377

    Google Scholar 

  • Torto T, Li S, Styer A, Huitema E, Testa A, Gow NAR, van West P, Kamoun S (2003) EST mining and functional expression assays identify extracellular effector proteins from Phytophthora. Genome Res l3:l675-l685

    Google Scholar 

  • Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RH, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL, Chapman J, Damasceno CM, Dorrance AE, Dou D, Dickerman AW, Dubchak IL, Garbelotto M, Gijzen M, Gordon SG, Govers F, Grunwald NJ, Huang W, Ivors KL, Jones RW, Kamoun S, Krampis K, Lamour KH, Lee MK, McDonald WH, Medina M, Meijer HJ, Nordberg EK, Maclean DJ, Ospina-Giraldo MD, Morris PF, Phuntumart V, Putnam NH, Rash S, Rose JK, Saki- hama Y, Salamov AA, Savidor A, Scheuring CF, Smith BM, Sobral BW, Terry A, Torto-Alalibo TA, Win J, Xu Z, Zhang H, Grigoriev IV, Rokhsar DS, Boore JL (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 3l3:l26l-l266

    Google Scholar 

  • van den Burg HA, Spronk CA, Boeren S, Kennedy MA, Viss- ers JP, Vuister GW, de Wit PJ, Vervoort J (2004) Binding of the AVR4 elicitor of Cladosporium fulvum to chitotriose units is facilitated by positive allosteric protein-protein interactions: the chitin-binding site of AVR4 represents a novel binding site on the folding scaffold shared between the invertebrate and the plant chitin-binding domain. J Biol Chem 279:l6786-l6796

    Google Scholar 

  • van den Burg HA, Harrison SJ, Joosten MH, Vervoort J, de Wit PJ (2006) Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol Plant-Microbe Interact l9:l420-l430

    Google Scholar 

  • van den Hooven HW, van den Burg HA, Vossen P, Boeren S, de Wit PJ, Vervoort J (200l) Disulfide bond structure of the AVR9 elicitor of the fungal tomato pathogen Cladosporium fulvum: evidence for a cystine knot. Biochemistry 40:3458-3466

    Google Scholar 

  • van Kan JAL, van den Ackerveken GFJM, de Wit PJGM (l99l) Cloning and characterization of cDNA of avir- ulence gene avr9 of the fungal pathogen Cladosporium fulvum, causal agent of tomato leaf mold. Mol Plant-Microbe Interact 4:52-59

    Google Scholar 

  • Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, van West P, Chapman S, Hein I, Toth IK, Pritchard L, Birch PR (2007) A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450:ll5-ll8

    Google Scholar 

  • Win J, Morgan W, Bos J, Krasileva KV, Cano LM, Chaparro- Garcia A, Ammar R, Staskawicz BJ, Kamoun S (2007) Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic Oomycetes. Plant Cell l9:2349-2369

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophien Kamoun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kamoun, S. (2009). The Secretome of Plant-Associated Fungi and Oomycetes. In: Deising, H.B. (eds) Plant Relationships. The Mycota, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87407-2_9

Download citation

Publish with us

Policies and ethics