Skip to main content

The Use of Hilbert-Schmidt Decomposition for Implementing Quantum Gates

  • Conference paper
Book cover Optical SuperComputing (OSC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5172))

Included in the following conference series:

  • 734 Accesses

Abstract

It is shown how to realize quantum gates by decomposing the gates into summation of unitary matrices where each of these matrices is given by a tensor multiplication of the unit and Pauli 2x2 spin matrices. It is assumed that each of these matrices is operating on a different copy of the quantum states produced by ’quantum encoders’ with a certain probability of success. The use of the present probabilistic linear optics’ method for realizing quantum gates is demonstrated by the full analysis given for the control phase shift gate, but the use of the present method for other gates, including the control-not gate, is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  2. Benenti, G., Casati, G., Strini, G.: Principles of Quantum Computation and Information, Basic concepts, vol. 1. World Scientific, Singapore (2005)

    Google Scholar 

  3. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46–52 (2001)

    Article  Google Scholar 

  4. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007)

    Article  Google Scholar 

  5. Pittman, T.B., Jacobs, B.C., Franson, J.D.: Probabilistic quantum logic operations using polarization beam splitters. Phys. Rev. A 64(062311), 1–9 (2001)

    Google Scholar 

  6. Pittman, T.B., Jacobs, B.C., Franson, J.D.: Demonstration of non-deterministic quantum logic operations using linear optical elements. Phys. Rev. Lett. 88(257902), 1–4 (2002)

    Google Scholar 

  7. Pittman, T.B., Jacobs, B.C., Franson, J.D.: Probabilistic quantum encoder for single- photon qubits. Phys. Rev. A 69(042306), 1–4 (2004)

    MathSciNet  Google Scholar 

  8. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, London (1998)

    Google Scholar 

  9. Ben-Aryeh, Y., Mann, A., Sanders, B.C.: Empirical state determination of entangled two-level systems and its relation to information theory. Foundations of Physics 29, 1963–1975 (1999)

    Article  MathSciNet  Google Scholar 

  10. Yariv, A.: Optical Electronics. Saunders College Publishing, NewYork (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ben-Aryeh, Y. (2008). The Use of Hilbert-Schmidt Decomposition for Implementing Quantum Gates. In: Dolev, S., Haist, T., Oltean, M. (eds) Optical SuperComputing. OSC 2008. Lecture Notes in Computer Science, vol 5172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85673-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85673-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85672-6

  • Online ISBN: 978-3-540-85673-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics