Skip to main content

Solving NP-Complete Problems with Delayed Signals: An Overview of Current Research Directions

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5172))

Abstract

In this paper we summarize the existing principles for building unconventional computing devices that involve delayed signals for encoding solutions to NP-complete problems. We are interested in the following aspects: the properties of the signal, the operations performed within the devices, some components required for the physical implementation, precision required for correctly reading the solution and the decrease in the signal’s strength. Six problems have been solved so far by using the above enumerated principles: Hamiltonian path, travelling salesman, bounded and unbounded subset sum, Diophantine equations and exact cover. For the hardware implementation several types of signals can be used: light, electric power, sound, electro-magnetic etc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S.: NP-complete problems and physical reality. ACM SIGACT News Complexity Theory Column, March. ECCC TR05-026, quant-ph/0502072 (2005)

    Google Scholar 

  2. Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  3. Bajcsy, M., Zibrov, A.S., Lukin, M.D.: Stationary pulses of light in an atomic medium. Nature 426, 638–641 (2003)

    Article  Google Scholar 

  4. Collings, N., Sumi, R., Weible, K.J., Acklin, B., Xue, W.: The use of optical hardware to find good solutions of the travelling salesman problem (TSP). In: Proc. SPIE, vol. 1806, pp. 637–641 (1993)

    Google Scholar 

  5. Feynman, R.: Simulating physics with computers. International Journal of Theoretical Physics 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to NP-Completeness. Freeman & Co, San Francisco (1979)

    MATH  Google Scholar 

  7. Haist, T., Osten, W.: An Optical Solution For The Traveling Salesman Problem. Opt. Express 15, 10473–10482 (2007)

    Article  Google Scholar 

  8. Haist, T., Osten, W.: An Optical Solution For The Traveling Salesman Problem:erratum. Opt. Express 15, 12627–12627 (2007)

    Article  Google Scholar 

  9. Hartmanis, J.: On the weight of computations. Bulletin of the EATCS 55, 136–138 (1995)

    MATH  Google Scholar 

  10. Kieu, T.D.: Quantum algorithm for Hilbert’s tenth problem. Intl. Journal of Theoretical Physics 42, 1461–1478 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Muntean, O.: Optical Solutions for NP-complete problems, graduation thesis, Faculty of Mathematics and Computer Science, Babes-Bolyai University, Cluj-Napoca, Romania, defended 3rd of (July 2007)

    Google Scholar 

  12. Muntean, O., Oltean, M.: Using light for solving the unbounded subset-sum problem (submitted, 2008)

    Google Scholar 

  13. Muntean, O., Oltean, O.: Deciding whether a linear Diophantine equation has solutions by using a light-based device (submitted, 2008)

    Google Scholar 

  14. Oltean, M.: A light-based device for solving the Hamiltonian path problem. In: Calude, C., et al. (eds.) UC 2006. LNCS, vol. 4135, pp. 217–227. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Oltean, M.: Solving the Hamiltonian path problem with a light-based computer. Natural Computing 7(1), 57–70 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Oltean, M., Muntean, O.: Solving the subset-sum problem with a light-based device. Natural Computing (in press, 2008)

    Google Scholar 

  17. Oltean, M., Muntean, O.: Exact Cover with light. New Generation Computing 26(4) (2008)

    Google Scholar 

  18. Paun, Gh.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Paun, Gh.: P systems with active membranes: attacking NP-complete problems. Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

    MATH  MathSciNet  Google Scholar 

  20. Shaked, N.T., Messika, S., Dolev, S., Rosen, J.: Optical solution for bounded NP-complete problems. Applied Optics 46, 711–724 (2007)

    Article  Google Scholar 

  21. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Goldwasser, S. (ed.) Proc. 35nd Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  22. Vergis, A., Steiglitz, K., Dickinson, B.: The complexity of analog computation. Mathematics and Computers in Simulation 28, 91–113 (1986)

    Article  MATH  Google Scholar 

  23. Delay line memory @ Wikipedia (accessed) (12.06.2008), http://en.wikipedia.org/wiki/Delay_line_memory

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oltean, M., Muntean, O. (2008). Solving NP-Complete Problems with Delayed Signals: An Overview of Current Research Directions. In: Dolev, S., Haist, T., Oltean, M. (eds) Optical SuperComputing. OSC 2008. Lecture Notes in Computer Science, vol 5172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85673-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85673-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85672-6

  • Online ISBN: 978-3-540-85673-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics