Skip to main content

Controversies in Enucleation Technique and Implant Selection: Whether to Wrap, Attach Muscles, and Peg?

  • Chapter
Book cover Oculoplastics and Orbit

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

Abstract

  • The advent of porous orbital implants has greatly advanced the field of anophthalmic surgery.

  • The development of hydroxyapatite (HA) implants initiated a new generation of porous implants. Porous polyethylene and aluminum oxide are now commonly used alternatives.

  • Orbital implants are available in spherical, mounded, egg, and conical shapes.

  • Implant material selection is determined by several factors, including patient age and medical history, cost, availability, and surgeon preference.

  • A variety of techniques may be utilized to determine the appropriate implant size. Adults undergoing enucleation surgery most frequently require a 20- to 22-mm sphere, whereas 18- to 20-mm spherical implants may be adequate for evisceration procedures.

  • Patients younger than 5 years old typically receive a nonporous implant as this facilitates replacement with a larger porous implant later in childhood or adolescence. Older pediatric patients may do well with porous implants. Appropriate implant size selection depends on the age and development of the patient.

  • Surgeons who use porous polyethylene as their implant of choice commonly do not use an implant-wrapping material. Wrapping HA and aluminum oxide implants facilitates implant insertion and rectus muscle attachment to the implant.

  • Several implant-wrapping materials are commercially available. Polyglactin 910 (Vicryl®) is simple to use, is readily available, and may permit earlier implant fibrovascularization than other available materials.

  • Porous implants can be coupled to the overlying artificial eye with a titanium peg system. These coupling systems may allow for greater prosthesis motility. Implant peg use has declined due to the high incidence of postpegging complications (increased discharge, recurrent pyogenic granulomas, implant exposure around the peg, implant infection, tissue overgrowth, clicking).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ainbinder DJ, Haik BG, Tellado M (1994) Hydroxyapatite orbital implant abscess: histopathologic correlation of an infected implant following evisceration. Ophthal Plast Reconstr Surg 10:267–270

    PubMed  CAS  Google Scholar 

  2. Alwitry A, West S, King J et al (2007) Long-term follow-up of porous polyethylene spherical implants after enucleation and evisceration. Ophthal Plast Reconstr Surg 23:11–15

    PubMed  CAS  Google Scholar 

  3. Anderson RL, Thiese SM, Nerad JA et al (1990) The universal orbital implant: indications and methods. Adv Ophthalmic Plast Reconstr Surg 8:88–99

    PubMed  CAS  Google Scholar 

  4. Anderson RL, Ye n MT, Lucci LM et al (2002) The quasi-integrated porous polyethylene orbital implant. Ophthal Plast Reconstr Surg 18:50–55

    PubMed  Google Scholar 

  5. Apt L, Isenberg S (1973) Changes in orbital dimensions following enucleation. Arch Ophthalmol 90:393–395

    PubMed  CAS  Google Scholar 

  6. Arat YO, Shetlar DJ, Boniuk M (2003) Bovine pericardium versus homologous sclera as a wrapping for hydroxyapatite orbital implants. Ophthal Plast Reconstr Surg 19:189–193

    PubMed  Google Scholar 

  7. Arora V, Weeks K, Halperin EC et al (1992) Influence of coralline hydroxyapatite used as an ocular implant on the dose distribution of external beam photon radiation therapy. Ophthalmology 99:380–382

    PubMed  CAS  Google Scholar 

  8. Bentley R P, Sgouros S, Natarajan K et al (2002) Normal changes in orbital volume during childhood. J Neurosurg 96:742–746

    PubMed  Google Scholar 

  9. Blaydon SM, Shepler TR, Neuhaus RW et al (2003) The porous polyethylene (Medpor) spherical orbital implant: a retrospective study of 136 cases. Ophthal Plast Reconstr Surg 19:364–371

    PubMed  Google Scholar 

  10. Brooke FJ, Boyd A, Klug GM et al (2004) Lyodura use and the risk of iatrogenic Creutzfeldt—Jakob disease in Australia. Med J Aust 180:177–181

    PubMed  Google Scholar 

  11. Cepela MA, Nunery WR, Martin RT (1992) Stimulation of orbital growth by the use of expandable implants in the anophthalmic cat orbit. Ophthal Plast Reconstr Surg 8:157–167

    PubMed  CAS  Google Scholar 

  12. Cheng MS, Liao SL, Lin LL (2004) Late porous polyethylene implant exposure after motility coupling post placement. Am J Ophthalmol 138:420–424

    PubMed  Google Scholar 

  13. Choi JC, Iwamoto MA, Bstandig S et al (1999) Medpore motility coupling post: a rabbit model. Ophthal Plast Reconstr Surg 15:190–201

    PubMed  CAS  Google Scholar 

  14. Choo PH, Carter SR, Crawford JB et al (1999) Exposure of expanded polytetrafluoroethylene-wrapped hydroxyapa-tite orbital implant: a report of two patients. Ophthal Plast Reconstr Surg 15:77–78

    PubMed  CAS  Google Scholar 

  15. Christel P (1992) Biocompatibility of alumina. Clin Orthop 282:10–18

    PubMed  Google Scholar 

  16. Chuo JY, Dolman PJ, Ng TL et al (2009) Clinical and histo-pathologic review of 18 explanted porous polyethylene orbital implants. Ophthalmology 116:349–354

    PubMed  Google Scholar 

  17. Colen T P, Paridaens DA, Lemij HG et al (2000) Comparison of artificial eye amplitudes with acrylic and hydroxyapatite spherical enucleation implants. Ophthalmology 107:1889–1894

    PubMed  CAS  Google Scholar 

  18. Cook S, Dalton J (1992) Biocompatibility and biofunction-ality of implanted materials. Alpha Omegan 85:41–47

    PubMed  CAS  Google Scholar 

  19. Custer PL (2000) Enucleation: past, present, and future. Ophthal Plast Reconstr Surg 16:316–321

    PubMed  CAS  Google Scholar 

  20. Custer PL (2001) Reply to Dr. D.R. Jordan's letter on polyg-lactin mesh wrapping of hydroxyapatite implants. Ophthal Plast Reconstr Surg. 17:222–223

    Google Scholar 

  21. Custer PL, Kennedy RH, Woog JJ et al (2003) Orbital implants in enucleation surgery: a report by the American Academy of Ophthalmology. Ophthalmology 110:2054–2061

    PubMed  Google Scholar 

  22. Custer PL, Trinkaus KM (1999) Volumetric determination of enucleation implant size. Am J Ophthalmol 128:489–494

    PubMed  CAS  Google Scholar 

  23. Custer PL, Trinkaus KM (2007) Porous implant exposure: incidence, management, and morbidity. Ophthal Plast Reconstr Surg 23:1–7

    PubMed  Google Scholar 

  24. Custer PL, Trinkaus KM, Fornoff J (1999) Comparative motility of hydroxyapatite and alloplastic enucleation implants. Ophthalmology 106:513–516

    PubMed  CAS  Google Scholar 

  25. DePotter P, Shields CL, Shields JA et al (1992) Role of magnetic resonance imaging in the evaluation of the hydroxy-apatite orbital implant. Ophthalmology 99:824–830

    CAS  Google Scholar 

  26. DePotter P, Shields CL, Shields JA et al (1994) Use of the hydroxyapatite ocular implant in the pediatric population. Arch Ophthalmol 112:208–212

    CAS  Google Scholar 

  27. Dutton JJ (1991) Coralline hydroxyapatite as an ocular implant. Ophthalmology 98:370–377

    PubMed  CAS  Google Scholar 

  28. Edelstein C, Shields CL, DePotter P et al (1997) Complications of motility peg placement for the hydroxyapatite orbital implant. Ophthalmology 104:1616–1621

    PubMed  CAS  Google Scholar 

  29. Fahim DK, Frueh BR, Musch DC et al (2007) Complications of pegged and non-pegged hydroxyapatite orbital implants. Ophthal Plast Reconstr Surg 23:206–210

    PubMed  Google Scholar 

  30. Fountain TR, Goldberger S, Murphree AL (1999) Orbital development after enucleation in early childhood. Ophthal Plast Reconstr Surg 15:32–36

    PubMed  CAS  Google Scholar 

  31. Gayre GS, DeBacker CM, Lipham W et al (2001) Bovine pericardium as a wrapping for orbital implants. Ophthal Plast Reconstr Surg 17:381–387

    PubMed  CAS  Google Scholar 

  32. Gayre GS, Lipham W, Dutton JJ (2002) A comparison of rates of fibrovascular ingrowth in wrapped versus unwrapped hydroxyapatite spheres in a rabbit model. Ophthal Plast Reconstr Surg 18:275–280

    PubMed  Google Scholar 

  33. Goldberg RA, Holds JB, Ebrahimpour J (1992) Exposed hydroxyapatite orbital implants: report of six cases. Ophthalmology 99:831–836

    PubMed  CAS  Google Scholar 

  34. Guillinta P, Vasani SN, Granet DB et al (2003) Prosthetic motility in pegged versus unpegged integrated porous orbital implants. Ophthal Plast Reconstr Surg 19:119–122

    PubMed  Google Scholar 

  35. Heckmann JG, Lang CJ, Petruch F et al (1997) Transmission of Creutzfeldt-Jakob disease via a corneal transplant. J Neurol Neurosurg Psychiatry 63:388–390

    PubMed  CAS  Google Scholar 

  36. Heher KL, Katowitz JA, Low JE (1998) Unilateral dermis-fat graft implantation in the pediatric orbit. Ophthal Plast Reconstr Surg 14:81–88

    PubMed  CAS  Google Scholar 

  37. Heimann H, Bechrakis NE, Zepeda LC et al (2005) Exposure of orbital implants wrapped with polyester-urethane after enucleation for advanced retinoblastoma. Ophthal Plast Reconstr Surg 21:123–128

    PubMed  Google Scholar 

  38. Hintschich C, Zonneveld F, Baldeschi L et al (2001) Bony orbital development after early enucleation in humans. Br J Ophthalmol 85:205–208

    PubMed  CAS  Google Scholar 

  39. Hogan RN, Brown P, Heck E et al (1999) Risk of prion disease transmission from ocular donor tissue transplantation. Cornea 18:2–11

    PubMed  CAS  Google Scholar 

  40. Howard GM, Kinder RS, Macmillan AS Jr. (1965) Orbital growth after unilateral enucleation in childhood. Arch Ophthalmol 73:80–83

    PubMed  CAS  Google Scholar 

  41. Hsu WC, Green J P, Spilker MH et al (2003) Primary placement of a titanium motility post in a porous polyethylene orbital implant. Ophthal Plast Reconstr Surg 16:370–379

    Google Scholar 

  42. Imhof SM, Mourits M P, Hofman P et al (1996) Quantifi-cation of orbital and mid-facial growth retardation after megavoltage external beam irradiation in children with retinoblastoma. Ophthalmology 103:263–268

    PubMed  CAS  Google Scholar 

  43. Inkster CF, Ng SG, Leatherbarrow B (2002) Primary banked scleral patch graft in the prevention of exposure of hydroxy-apatite orbital implants. Ophthalmology 109:389–392

    PubMed  Google Scholar 

  44. Iordanidou V, De PP (2004) Porous polyethylene orbital implant in the pediatric population. Am J Ophthalmol 138:425–429

    PubMed  Google Scholar 

  45. Jordan DR (2001) Spontaneous loosening of hydroxyapa-tite peg sleeves. Ophthalmology 108:2041–2044

    PubMed  CAS  Google Scholar 

  46. Jordan DR (2004) Localization of extraocular muscles during secondary orbital implantation surgery: the tunnel technique: experience in 100 patients. Ophthalmology 111:1048–1054

    PubMed  Google Scholar 

  47. Jordan DR, Allen LH, Ells A et al (1995) The use of Vicryl mesh (polyglactin 910) for implantation of hydroxyapatite orbital implants. Ophthal Plast Reconstr Surg 11:95–99

    PubMed  CAS  Google Scholar 

  48. Jordan DR, Anderson RL, Nerad JA et al (1987) A preliminary report on the universal implant. Arch Ophthalmol 105:1726–1731

    PubMed  CAS  Google Scholar 

  49. Jordan DR, Bawazeer A (2001) Experience with 120 synthetic hydroxyapatite implants (FCI3). Ophthal Plast Reconstr Surg 17:184–190

    PubMed  CAS  Google Scholar 

  50. Jordan DR, Brownstein S, Faraji H (2004) Clinicopathologic analysis of 15 explanted hydroxyapatite implants. Ophthal Plast Reconstr Surg 20:285–290

    PubMed  Google Scholar 

  51. Jordan DR, Brownstein S, Gilberg S et al (2002) Investigation of a bioresorbable orbital implant. Ophthal Plast Reconstr Surg 18:342–348

    PubMed  Google Scholar 

  52. Jordan DR, Brownstein S, Jolly SS (1996) Abscessed hydroxyapatite orbital implants: a report of two cases. Ophthalmology 103:1784–1787

    PubMed  CAS  Google Scholar 

  53. Jordan DR, Chan S, Mawn L et al (1999) Complications associated with pegging hydroxyapatite orbital implants. Ophthalmology 106:505–512

    PubMed  CAS  Google Scholar 

  54. Jordan DR, Ells A, Brownstein S et al (1995) Vicryl-mesh wrap for the implantation of hydroxyapatite orbital implants: an animal model. Can J Ophthalmol 30:241–246

    PubMed  CAS  Google Scholar 

  55. Jordan DR, Gilberg S, Bawazeer A (2004) Coralline hydroxyapatite orbital implant (bio-eye): experience with 158 patients. Ophthal Plast Reconstr Surg 20:69–74

    PubMed  Google Scholar 

  56. Jordan DR, Gilberg S, Mawn LA (2003) The bioceramic orbital implant: experience with 107 implants. Ophthal Plast Reconstr Surg 19:128–135

    PubMed  Google Scholar 

  57. Jordan DR, Hwang I, McEachren TM et al (2000) Brazilian hydroxyapatite implant. Ophthal Plast Reconstr Surg 16:363–369

    PubMed  CAS  Google Scholar 

  58. Jordan DR, Klapper SR (1999) Wrapping hydroxyapatite implants. Ophthalmic Surg Lasers 30:403–407

    PubMed  CAS  Google Scholar 

  59. Jordan DR, Klapper SR (2000) A new titanium peg system for hydroxyapatite orbital implants. Ophthal Plast Reconstr Surg 16:380–387

    PubMed  CAS  Google Scholar 

  60. Jordan DR, Klapper SR, Gilberg SM (2003) The use of Vicryl mesh in 200 porous orbital implants. Ophthal Plast Reconstr Surg 19:53–61

    PubMed  Google Scholar 

  61. Jordan DR, Klapper SR, Mawn L et al (1998) Abscess formation within a synthetic hydroxyapatite orbital implant. Can J Ophthalmol 33:329–332

    PubMed  CAS  Google Scholar 

  62. Jordan DR, Mawn L, Brownstein S et al (2000) The biocer-amic orbital implant: a new generation of porous implants. Ophthal Plast Reconstr Surg 16:347–355

    PubMed  CAS  Google Scholar 

  63. Jordan DR, Munro SM, Brownstein S et al (1998) A synthetic hydroxyapatite implant: the so-called counterfeit implant. Ophthal Plast Reconstr Surg 14:244–249

    PubMed  CAS  Google Scholar 

  64. Jordan DR, Pelletier C, Gilberg S et al (1999) A new variety of hydroxyapatite: the Chinese implant. Ophthal Plast Reconstr Surg 15:420–424

    PubMed  CAS  Google Scholar 

  65. Kaltreider SA (2000) The ideal ocular prosthesis: analysis of prosthetic volume. Ophthal Plast Reconstr Surg 16:388–392

    PubMed  CAS  Google Scholar 

  66. Kaltreider SA, Jacobs JL, Hughes MO (1999) Predicting the ideal implant size before enucleation. Ophthal Plast Reconstr Surg 15:37–43

    PubMed  CAS  Google Scholar 

  67. Kaltreider SA, Lucarelli MJ (2002) A simple algorithm for selection of implant size for enucleation and evisceration. Ophthal Plast Reconstr Surg 18:336–341

    PubMed  Google Scholar 

  68. Kao L (2000) Polytetrafluoroethylene as a wrapping material for a hydroxyapatite orbital implant. Ophthal Plast Reconstr Surg 16:286–288

    PubMed  CAS  Google Scholar 

  69. Kao SCS, Chen S (1999) The use of rectus abdominis sheath for wrapping of the hydroxyapatite orbital implants. Ophthalmic Surg Lasers 30:69–71

    PubMed  CAS  Google Scholar 

  70. Karesh JW (1987) Polytetrafluoroethylene as a graft material in ophthalmic plastic and reconstructive surgery: an experimental and clinical study. Ophthal Plast Reconstr Surg 3:179–185

    PubMed  CAS  Google Scholar 

  71. Karesh J W, Dresner SC (1994) High-density porous polyethylene (Medpor) as a successful anophthalmic socket implant. Ophthalmology 101:1688–1695

    PubMed  CAS  Google Scholar 

  72. Kaste SC, Chen G, Fontanesi J et al (1997) Orbital development in long-term survivors of retinoblastoma. J Clin Oncol 15:1183–1189

    PubMed  CAS  Google Scholar 

  73. Kennedy RE (1964) The effect of early enucleation on the orbit in animals and humans. Trans Am Ophthalmol Soc 62:459–510

    PubMed  CAS  Google Scholar 

  74. Kim YD, Goldberg RA, Shorr N et al (1994) Management of exposed hydroxyapatite orbital implants. Ophthalmology 101:1709–1715

    PubMed  CAS  Google Scholar 

  75. Klapper SR, Jordan DR, Brownstein S et al (1999) Incomplete fibrovascularization of a hydroxyapatite orbital implant 3 months after implantation. Arch Ophthalmol 106:1640–1641

    CAS  Google Scholar 

  76. Klapper SR, Jordan DR, Ells A et al (2003) Hydroxyapatite orbital implant vascularization assessed by magnetic resonance imaging. Ophthal Plast Reconstr Surg. 19:46–52

    PubMed  Google Scholar 

  77. Klapper SR, Jordan DR, Punja K et al (2000) Hydroxyapatite implant wrapping materials: analysis of fibrovascular ingrowth in an animal model. Ophthal Plast Reconstr Surg 16:278–285

    PubMed  CAS  Google Scholar 

  78. Klett A, Guthoff R (2003) Muscle pedunculated scleral flaps. A microsurgical modification to improve prosthesis motility. Ophthalmologe 100:449–452

    CAS  Google Scholar 

  79. Lang CJ, Heckmann JG, Neundorfer B (1998) Creutzfeldt– Jakob disease via dural and corneal transplants. J Neurol Sci 160:128–139

    PubMed  CAS  Google Scholar 

  80. Lee SY, Jang J W, Lew H et al (2002) Complications in motility PEG placement for hydroxyapatite orbital implant in anophthalmic socket. Jpn J Ophthalmol 46:103–107

    PubMed  Google Scholar 

  81. Li T, Shen J, Duffy MT (2001) Exposure rates of wrapped and unwrapped orbital implants following enucleation. Ophthal Plast Reconstr Surg 17:431–435

    PubMed  CAS  Google Scholar 

  82. Liao SL, Chen MS, Lin LL (2005) Primary placement of a titanium sleeve in hydroxyapatite orbital implants. Eye 19:400–405

    PubMed  CAS  Google Scholar 

  83. Liao SL, Shih MJ, Lin LL (2005) Primary placement of a hydroxyapatite-coated sleeve in bioceramic orbital implants. Am J Ophthalmol 139:235–241

    PubMed  CAS  Google Scholar 

  84. Lin CJ, Liao SL, Jou JR et al (2002) Complications of motil-ity peg placement for porous hydroxyapatite orbital implants. Br J Ophthalmol 86:394–396

    PubMed  Google Scholar 

  85. Long JA, Tann TM, III, Bearden WH III et al (2003) Enucleation: is wrapping the implant necessary for optimal motility? Ophthal Plast Reconstr Surg 19:194–197

    PubMed  Google Scholar 

  86. Marx DP, VagefiMR, Bearden WH et al (2008) The quasi-integrated porous polyethylene implant in pediatric patients enucleated for retinoblastoma. Orbit 27:403–406

    PubMed  Google Scholar 

  87. Mawn L, Jordan DR, Gilberg S (1998) Scanning electron microscopic examination of porous orbital implants. Can J Ophthalmol 33:203–209

    PubMed  CAS  Google Scholar 

  88. Mawn LA, Jordan DR, Gilberg S (2001) Proliferation of human fibroblasts in vitro after exposure to orbital implants. Can J Ophthalmol 36:245–251

    PubMed  CAS  Google Scholar 

  89. Migliori ME, Putterman AM (1991) The domed dermis-fat graft orbital implant. Ophthal Plast Reconstr Surg 7:23–30

    PubMed  CAS  Google Scholar 

  90. Miller DM, Murray T, Suarez F et al (2007) Motility assessment and clinical outcomes of a magnetically integrated microporous implant. Ophthalmic Surg Lasers Imaging 38:339–341

    PubMed  Google Scholar 

  91. Mitchell KT, Hollsten DA, White WL et al (2001) The autogenous dermis-fat orbital implant in children. J AAPOS 5:367–369

    PubMed  CAS  Google Scholar 

  92. Naik MN, Murthy RK, Honavar SG (2007) Comparison of vascularization of Medpor and Medpor-Plus orbital implants: a prospective, randomized study. Ophthal Plast Reconstr Surg 23:463–467

    PubMed  Google Scholar 

  93. Naugle TC Jr, Fry CL, Sabatier RE et al (1997) High leg incision fascia lata harvesting. Ophthalmology 104:1480–1488

    PubMed  Google Scholar 

  94. Naugle TC Jr, Lee AM, Haik BG et al (1999) Wrapping hydroxyapatite orbital implants with posterior auricular muscle complex grafts. Am J Ophthalmol 128:495–501

    PubMed  Google Scholar 

  95. Nunery WR (2003) Risk of prion transmission with the use of xenografts and allografts in surgery. Ophthal Plast Reconstr Surg 17:389–394

    Google Scholar 

  96. Nunery WR, Heinz G W, Bonnin JM et al (1993) Exposure rate of hydroxyapatite spheres in the anophthalmic socket: histopathologic correlation and comparison with silicone sphere implants. Ophthal Plast Reconstr Surg 9:96–104

    PubMed  CAS  Google Scholar 

  97. Nunery WR, Hetzler KJ (1985) Dermal-fat graft as a primary enucleation technique. Ophthalmology 92:1256–1261

    PubMed  CAS  Google Scholar 

  98. Oestreicher JH, Liu E, Berkowitz M (1997) Complications of hydroxyapatite orbital implants: a review of 100 consecutive cases and a comparison of Dexon mesh (polygly-colic acid) with scleral wrapping. Ophthalmology 104:324–329

    PubMed  CAS  Google Scholar 

  99. Pelletier CR, Jordan DR, Gilberg SM (1998) Use of tem-poralis fascia for exposed hydroxyapatite orbital implants. Ophthal Plast Reconstr Surg 14:198–203

    PubMed  CAS  Google Scholar 

  100. Perry AC (1991) Advances in enucleation. Ophthal Plast Reconstr Surg 4:173–182

    Google Scholar 

  101. Perry JD (2003) Hydroxyapatite implants [letter]. Ophthalmology 110:1281.

    PubMed  Google Scholar 

  102. Perry JD, Tam RC (2004) Safety of unwrapped spherical orbital implants. Ophthal Plast Reconstr Surg 20:281–284

    PubMed  Google Scholar 

  103. Pfieffer RL (1945) The effect of enucleation on the orbit. Trans Am Acad Ophthalmol 49:236–239

    Google Scholar 

  104. Remulla HD, Rubin PAD, Shore JW et al (1995) Complications of porous spherical orbital implants. Ophthalmology 102:586–593

    PubMed  CAS  Google Scholar 

  105. Rubin PA, Popham J, Rumelt S et al (1998) Enhancement of the cosmetic and functional outcome of enucleation with the conical orbital implant. Ophthalmology 105:919–925

    PubMed  CAS  Google Scholar 

  106. Rubin PAD, Fay AM, Remulla HD (1999) Primary placement of motility coupling post in porous polyethylene orbital implants. Arch Ophthalmol 118:826–832

    Google Scholar 

  107. Seiff SR, Chang JS Jr, Hurt MH et al (1994) Polymerase chain reaction identification of human immunodefi-ciency virus-1 in preserved human sclera. Am J Ophthal-mol 118:528–529

    CAS  Google Scholar 

  108. Shoamanesh A, Pang N, Oestreicher JH (2007) Complications of orbital implants; a review of 542 patients who have undergone orbital implantation and 275 subsequent peg placements. Orbit 25:173–182

    Google Scholar 

  109. Simonds RJ, Holmberg SD, Hurwitz RL et al (1992) Transmission of human immunodeficiency virus type 1 from a seronegative organ and tissue donor. N Engl J Med 326:726–732

    PubMed  CAS  Google Scholar 

  110. Su G W, Yen MT (2004) Current trends in managing the anophthalmic socket after primary enucleation and evisceration. Ophthal Plast Reconstr Surg 20:274–280

    PubMed  Google Scholar 

  111. Suter AJ, Molteno AC, Bevin TH et al (2002) Long term follow up of bone derived hydroxyapatite orbital implants. Br J Ophthalmol 86:1287–1292

    PubMed  CAS  Google Scholar 

  112. Taylor W (1939) Effect of enucleation of one eye in childhood upon subsequent development of the face. Trans Ophthalmol Soc U K 59:368–373

    Google Scholar 

  113. Thaller VT (1997) Enucleation volume measurement. Ophthal Plast Reconstr Surg 13:18–20

    PubMed  CAS  Google Scholar 

  114. Trichopoulos N, Augsburger JJ (2005) Enucleation with unwrapped porous and nonporous orbital implants: a 15-year experience. Ophthal Plast Reconstr Surg 21:331–336

    PubMed  Google Scholar 

  115. Wang JK, Lai PC, Liao SL (2009) Late exposure of the bio-ceramic orbital implant. Am J Ophthalmol 147:162–170

    PubMed  CAS  Google Scholar 

  116. Wang JK, Liao SL, Lai PC et al (2007) Prevention of exposure of porous orbital implants following enucleation. Am J Ophthalmol 143:61–67

    PubMed  Google Scholar 

  117. Wang JK, Liao SL, Lin LL et al (2007) Porous orbital implants, wraps, and PEG placement in the pediatric population after enucleation. Am J Ophthalmol 144:109–116

    PubMed  Google Scholar 

  118. Yago K, Furuta M (2001) Orbital growth after unilateral enucleation in infancy without an orbital implant. Jpn J Ophthalmol 45:648–652

    PubMed  CAS  Google Scholar 

  119. Yazici B, Akova B, Sanli O (2007) Complications of primary placement of motility post in porous polyethylene implants during enucleation. Am J Ophthalmol 143:828–834

    PubMed  Google Scholar 

  120. Yoon JS, Lew H, Kim SJ et al. (2008) Exposure rate of hydroxy-apatite orbital implants. Ophthalmology 115:566–572

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jordan, D.R., Klapper, S.R. (2010). Controversies in Enucleation Technique and Implant Selection: Whether to Wrap, Attach Muscles, and Peg?. In: Guthoff, R.F., Katowitz, J.A. (eds) Oculoplastics and Orbit. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85542-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85542-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85541-5

  • Online ISBN: 978-3-540-85542-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics