Skip to main content

Evolutionary Foundations of Cooperation and Group Cohesion

  • Chapter
  • First Online:

Part of the book series: Springer Series in Game Theory ((SSGT))

Abstract

In biology, the evolution of increasingly cooperative groups has shaped the history of life. Genes collaborate in the control of cells; cells efficiently divide tasks to produce cohesive multicellular individuals; individual members of insect colonies cooperate in integrated societies. Biological cooperation provides a foundation on which to understand human behavior. Conceptually, the economics of efficient allocation and the game-like processes of strategy are well understood in biology; we find the same essential processes in many successful theories of human sociality. Historically, the trace of biological evolution informs in two ways. First, the evolutionary transformations in biological cooperation provide insight into how economic and strategic processes play out over time-a source of analogy that, when applied thoughtfully, aids analysis of human sociality. Second, humans arose from biological history – a factual account of the past that tells us much about the material basis of human behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander RD (1979) Darwinism and human affairs. University of Washington Press, Seattle

    Google Scholar 

  • Alexander RD (1987) The biology of moral systems. Aldine de Gruyter, New York

    Google Scholar 

  • Alexander RD (1990) How did humans evolve? Museum of Zoology, The University of Michigan 1:1–38

    Google Scholar 

  • Alexander RD, Noonan KM, Crespi BJ (1991) The evolution of eusociality. In: Sherman PW, Jarvis JUM, Alexander RD (eds) The Biology of the Naked Mole Rat, Princeton University Press, Princeton, NJ, pp 3–44

    Google Scholar 

  • Anderson RM, May RM (1982) Coevolution of hosts and parasites. Parasitology 85:411–426

    Article  Google Scholar 

  • Aumann RJ (1974) Subjectivity and correlation in randomized strategies. J Math Econ 1:67–96

    Article  Google Scholar 

  • Aumann RJ (1987) Correlated equilibrium as an expression of Bayesian rationality. Econometrica 55:1–18

    Article  Google Scholar 

  • Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211:1390–1396

    Article  Google Scholar 

  • Binmore KG (1994) Game theory and the social contract. MIT, Cambridge, MA

    Google Scholar 

  • Bot ANM, Rehner SA, Boomsma JJ (2001) Partial incompatibility between ants and symbiotic fungi in two sympatric species of Acromyrmex leaf-cutting ants. Evolution 55:1980–1991

    Google Scholar 

  • Bourke AFG (1999) Colony size, social complexity and reproductive conflict in social insects. J Evol Biol 12:245–257

    Article  Google Scholar 

  • Bremermann HJ, Pickering J (1983) A game-theoretical model of parasite virulence. J Theor Biol 100:411–426

    Article  Google Scholar 

  • Colwell RK, Wilson DS (1981) Group selection is implicated in the evolution of female-biased sex ratios. Nature 290:401–404

    Article  Google Scholar 

  • Crow JF (1979) Genes that violate Mendel’s rules. Sci Am 240:134–144

    Article  Google Scholar 

  • de Roode JC, Pansini R, Cheesman SJ, Helinski MEH, Huijben S, Wargo AR, Bell AS, Chan BHK, Walliker D, Read AF (2005) Virulence and competitive ability in genetically diverse malaria infections. Proc Natl Acad Sci USA 102:7624–7628

    Article  Google Scholar 

  • Diamond J (1997) Flying yellow kangaroos. Nature 385:692

    Article  Google Scholar 

  • Eigen M (1971) Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523

    Article  Google Scholar 

  • Eigen M, Schuster P (1979) The hypercycle: a principle of natural self-organization. Springer, New York

    Google Scholar 

  • Fenner F, Day MF, Woodroofe GM (1956) Epidemiological consequences of mechanical transmission of myxomatosis by mosquitoes. J Hyg 54:173–194

    Google Scholar 

  • Fisher RA (1983) Natural selection, heredity, and eugenics: including selected correspondence of R. A. Fisher with Leonard Darwin and Others, Edited by J. H. Bennett. Oxford University Press, New York

    Google Scholar 

  • Flack JC, Krakauer DC, de Wall FBM (2005a) Robustness mechanisms in primate societies: a perturbation study. Proc R Soc Lond B 272

    Google Scholar 

  • Flack JC, de Waal FBM, Krakauer DC (2005b) Social structure, robustness, and policing cost in a cognitively sophisticated species. Am Nat 165:E126–E139

    Article  Google Scholar 

  • Flack JC, Girvan M, de Waal FBM, Krakauer DC (2006) Policing stabilizes construction of social niches in primates. Nature 439:426–429

    Article  Google Scholar 

  • Flannery TF, Martin R, Szalay A (1996) Tree Kangaroos: a curious natural history. Reed Books, Australia

    Google Scholar 

  • Frank SA (1985) Hierarchical selection theory and sex ratios. II. On applying the theory, and a test with fig wasps. Evolution 39:949–964

    Article  Google Scholar 

  • Frank SA (1992) A kin selection model for the evolution of virulence. Proc R Soc Lond B 250:195–197

    Article  Google Scholar 

  • Frank SA (1994a) Genetics of mutualism: the evolution of altruism between species. J Theor Biol 170:393–400

    Article  Google Scholar 

  • Frank SA (1994b) Kin selection and virulence in the evolution of protocells and parasites. Proc R Soc Lond B 258:153–161

    Article  Google Scholar 

  • Frank SA (1995a) Mutual policing and repression of competition in the evolution of cooperative groups. Nature 377:520–522

    Article  Google Scholar 

  • Frank SA (1995b) The origin of synergistic symbiosis. J Theor Biol 176:403–410

    Article  Google Scholar 

  • Frank SA (1996a) Host-symbiont conflict over the mixing of symbiotic lineages. Proc R Soc Lond B 263:339–344

    Article  Google Scholar 

  • Frank SA (1996b) Models of parasite virulence. Quart Rev Biol 71:37–78

    Article  Google Scholar 

  • Frank SA (1996c) Policing and group cohesion when resources vary. Anim Behav 52:1163–1169

    Article  Google Scholar 

  • Frank SA (1998) Foundations of social evolution. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Frank SA (2003) Repression of competition and the evolution of cooperation. Int J Org Evolution 57:693–705

    Google Scholar 

  • Frank SA (2006) Social selection. In: Fox CW, Wolf JB (eds) Evolutionary genetics: concepts and case studies, Oxford University Press, New York, pp 350–363

    Google Scholar 

  • Ghiselin MT (1969) The triumph of the Darwinian method. University of Chicago Press, Chicago

    Google Scholar 

  • Godfray HCJ, Werren JH (1996) Recent developments in sex ratio studies. Trends Ecol Evol 11:59–63

    Article  Google Scholar 

  • Griffin AS, West SA, Buckling A (2004) Cooperation and competition in pathogenic bacteria. Nature 430:1024–1027

    Article  Google Scholar 

  • Hamilton WD (1967) Extraordinary sex ratios. Science 156:477–488

    Article  Google Scholar 

  • Hamilton WD (1970) Selfish and spiteful behaviour in an evolutionary model. Nature 228:1218–1220

    Article  Google Scholar 

  • Hamilton WD (1972) Altruism and related phenomena, mainly in social insects. Annu Rev Ecol Syst 3:193–232

    Article  Google Scholar 

  • Hamilton WD (1975) Innate social aptitudes of man: an approach from evolutionary genetics. In: Fox R (ed) Biosocial Anthropology, Wiley, New York, pp 133–155

    Google Scholar 

  • Hamilton WD (1979) Wingless and fighting males in fig wasps and other insects. In: Blum MS, Blum NA (eds) Reproductive Competition and Sexual Selection in Insects, Academic, New York, pp 167–220

    Google Scholar 

  • Hardin G (1968) The tragedy of the commons. Science 162:1243–1248

    Article  Google Scholar 

  • Hardy ICW (2002) Sex ratios: concepts and research methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Herre EA (1985) Sex ratio adjustment in fig wasps. Science 228:896–898

    Article  Google Scholar 

  • Herre EA (1993) Population structure and the evolution of virulence in nematode parasites of fig wasps. Science 259:1442–1446

    Article  Google Scholar 

  • Leigh JEG (1971) Adaptation and diversity. Freeman, San Francisco

    Google Scholar 

  • Leigh EG (1977) How does selection reconcile individual advantage with the good of the group? Proc Natl Acad Sci USA 74:4542–4546

    Article  Google Scholar 

  • Leigh EG (1991) Genes, bees and ecosystems: the evolution of a common interest among individuals. Trends Ecol Evol 6:257–262

    Article  Google Scholar 

  • Levin SA (1983) Some approaches to the modelling of coevolutionary interactions. In: Nitecki MH (ed) Coevolution, University of Chicago Press, Chicago, pp 21–65

    Google Scholar 

  • Levin SA, Pimental D (1981) Selection of intermediate rates of increase in parasite-host systems. Am Nat 117:308–315

    Article  Google Scholar 

  • Lewontin RC (1970) The units of selection. Annu Rev Ecol Syst 1:1–18

    Article  Google Scholar 

  • Maynard Smith J (1979) Hypercycles and the origin of life. Nature 280:445–446

    Article  Google Scholar 

  • Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    Google Scholar 

  • Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Freeman, San Francisco

    Google Scholar 

  • Mueller UG (2002) Ant versus fungus versus mutualism: ant-cultivar conflict and the deconstruction of the attine ant-fungus symbiosis. Am Nat 160:S67–S98

    Article  Google Scholar 

  • Mueller UG, Poulin J, Adams RMM (2004) Symbiont choice in a fungus-growing ant (Attini, Formicidae). Behav Ecol 15:357–364

    Article  Google Scholar 

  • Nowak MA, Bonhoeffer S, May RM (1994) Spatial games and the maintenance of cooperation. Proc Natl Acad Sci USA 91:4877–4881

    Article  Google Scholar 

  • Pollack GB (1996) Kin selection, kin avoidance and correlated strategies. Evol Ecol 10:29–43

    Article  Google Scholar 

  • Queller DC (1994) Genetic relatedness in viscous populations. Evol Ecol 8:70–73

    Article  Google Scholar 

  • Rankin DJ, Bargum K, Kokko H (2007) The tragedy of the commons in evolutionary biology. Trends Ecol Evol 22:643–651

    Article  Google Scholar 

  • Ratnieks FLW, Reeve HK (1992) Conflict in single-queen Hymenopteran societies: the structure of conflict and processes that reduce conflict in advanced eusocial species. J Theor Biol 158:33–65

    Article  Google Scholar 

  • Skyrms B (1996) Evolution of the social contract. Cambridge University Press, Cambridge

    Google Scholar 

  • Szathmáry E, Demeter L (1987) Group selection of early replicators and the origin of life. J Theor Biol 128:463–486

    Article  Google Scholar 

  • Taylor PD (1992a) Altruism in viscous poplations–an inclusive fitness approach. Evol Ecol 6:352–356

    Article  Google Scholar 

  • Taylor PD (1992b) Inclusive fitness in a heterogeneous environment. Proc R Soc Lond B 249:299–302

    Article  Google Scholar 

  • Taylor PD, Frank SA (1996) How to make a kin selection model. J Theor Biol 180:27–37

    Article  Google Scholar 

  • Trivers R (1971) The evolution of reciprocal altruism. Quart Rev Biol 46:35–57

    Article  Google Scholar 

  • Wenseleers T, Ratnieks FLW (2004) Tragedy of the commons in Melipona bees. Proc R Soc Lond B 271:S310–S312

    Article  Google Scholar 

  • Wenseleers T, Ratnieks FLW (2006) Comparative analysis of worker reproduction and policing in eusocial Hymenoptera supports relatedness theory. Am Nat 168:E163–E179

    Article  Google Scholar 

  • Wilson DS (1980) The natural selection of populations and communities. Benjamin-Cummings, Menlo Park, CA

    Google Scholar 

  • Wilson DS, Pollock GB, Dugatkin LA (1992) Can altruism evolve in purely viscous populations? Evol Ecol 6:331–341

    Article  Google Scholar 

  • Wilson EO (1971) The insect societies. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Zhang MM, Poulsen M, Currie CR (2007) Symbiont recognition of mutualistic bacteria by Acromyrmex leaf-cutting ants. Int Soc Microb Ecol 1:313–320

    Google Scholar 

Download references

Acknowledgements

National Institute of General Medical Sciences MIDAS Program grant U01-GM-76499 supports my research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Frank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frank, S.A. (2009). Evolutionary Foundations of Cooperation and Group Cohesion. In: Levin, S. (eds) Games, Groups, and the Global Good. Springer Series in Game Theory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85436-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85436-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85435-7

  • Online ISBN: 978-3-540-85436-4

  • eBook Packages: Business and EconomicsEconomics and Finance (R0)

Publish with us

Policies and ethics