Skip to main content

Experimental investigation of heat transfer reduction using forward facing cavity for missile shaped bodies flying at hypersonic speed

  • Conference paper
Shock Waves

Summary

Forward facing circular nose cavity of 6 mm diameter in the nose portion of a generic missile shaped bodies is proposed to reduce the stagnation zone heat transfer. About 25% reduction in stagnation zone heat transfer is measured using platinum thin film sensors at Mach 8 in the IISc hypersonic shock tunnel. The presence of nose cavity does not alter the fundamental aerodynamic coefficients of the slender body. The experimental results along with the numerically predicted results is also discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reinecke WG and Sherman M 7(1993) The survivability and performance on hypervelocity projectiles, In Proc. of the 14th Intl Symposium on Ballistics.

    Google Scholar 

  2. Reinecke WG and Guillot MJ (1995) Full scale ablation testing of candidate hypervelocity nose tip materials, In Proc. of the 15th Intl Symposium on Ballistics.

    Google Scholar 

  3. Johnson RH 7(1959), Instability in hypersonic flow about blunt bodies, Phys. of Fluid, 2, p.526-532

    Article  MATH  Google Scholar 

  4. Engblom WA, Goldstein DB, Ladoon D, Schneider SP (1997) Fluid dynamics of hypersonic forward-facing cavity flow. AIAA Journal of Spacecraft and Rockets, 33 (3), 353-359

    Article  Google Scholar 

  5. Ladoon DW, Schneider SP, Schmisseur JD (1998) Physics of resonance in a supersonic forward-facing cavity. Journal of Spacecraft and Rockets, 33 (5), 626-632.

    Article  Google Scholar 

  6. Silton SI, Goldstein DB (2005) Use of an axial nose-tip cavity for delaying ablation onset in hypersonic flow. Journal of Fluid Mechanics, 528, 297-321

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saravanan, S., Nagashetty, K., Jagadeesh, G., Reddy, K. (2009). Experimental investigation of heat transfer reduction using forward facing cavity for missile shaped bodies flying at hypersonic speed. In: Hannemann, K., Seiler, F. (eds) Shock Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85168-4_98

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85168-4_98

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85167-7

  • Online ISBN: 978-3-540-85168-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics