Skip to main content
Book cover

Shock Waves pp 97–102Cite as

Modelling high explosives (HE) using smoothed particle hydrodynamics

  • Conference paper
  • 2344 Accesses

Summary

In this paper we present results from numerical simulations of high explosives, using a constant volume method and an axis-symmetric Regularized Smoothed Particle Hydrodynamics method. smoothed particle hydrodynamics method Empirical and numerical results show satisfactory agreement for 1 kg of detonating TNT charge. The method is further challenged with the study of shock propagation and shock reflection in complex geometries. The shock reflection pattern is altered by introducing barriers of different shapes. The effect of such barrier structures are studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Børve, S., Omang, M., & Trulsen, J. (2001). Regularized Smoothed Particle Hydrodynamics: A new approach to simulating magnetohydrodynamic shocks. Astrophys. J., 561, 82–93.

    Google Scholar 

  2. Børve, S., Omang, M., & Trulsen, J. (2005). Regularized Smoothed Particle Hydrodynamics with improved multi-resolution handling. J. Comput. Phys., 208(1), 345–367.

    Article  MathSciNet  Google Scholar 

  3. Børve, S., Omang, M., & Trulsen, J. (2006). Multidimensional MHD Shock Tests of Regularized Smoothed Particle Hydrodynamics. Astrophys. J. , 652, 1306–1317.

    Google Scholar 

  4. Kinney, G. F. & Graham, K. J. (1985). Explosive shocks in air (2nd edition). Shock and Vibration.

    Google Scholar 

  5. Omang, M., Børve, S., & Trulsen, J. (2005). Alternative kernel functions for Smoothed Particle Hydrodynamics in cylindrical symmetry. Shock Waves, 14(4), 293–298.

    Article  Google Scholar 

  6. Omang, M., Børve, S., & Trulsen, J. (2006). SPH in spherical and cylindrical coordinates. J. Comput. Phys., 213(1), 391–412.

    Article  MATH  MathSciNet  Google Scholar 

  7. Omang, M., Børve, S., & Trulsen, J. (2007). Shock collisions in 3d using an axi-symmetric Regularized Smoothed Particle Hydrodynamics RSPH code. Shock Waves.

    Google Scholar 

  8. US Army (1991). CONWEP- conventional weapons effects program, version 2.00. US Army Engineer Waterways Experimantel Station, Vicksburg, MS USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Omang, M., Børve, S., Trulsen, J. (2009). Modelling high explosives (HE) using smoothed particle hydrodynamics. In: Hannemann, K., Seiler, F. (eds) Shock Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85168-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85168-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85167-7

  • Online ISBN: 978-3-540-85168-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics