Skip to main content

Visualization of Epicuticular Grease on the Covering Wings in the Colorado Potato Beetle: A Scanning Probe Approach

  • Chapter
Applied Scanning Probe Methods XIII

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Insects and spiders are supposed to release a greasy layer on their body surface, which may be involved in chemical and physical interactions between the organisms and their environment. In mating events, males frequently adhere to the female’s dorsal body site by means of their feet, whereas grease should play an important role at the feet-attachment substrate interface. The properties and thickness of epicuticular grease have been diversely reported, but no definite visualizations and measurements have been previously carried out. Using the Colorado Potato beetle as a model species, we visualized the epicuticular grease on covering wings and characterized its adhesive properties. In this study, three different AFM modes (contact, tapping, and phase contrast) were applied. Obtained data were compared with the results of the Cryo-SEM. The grease layer thickness is about 8 nm on elevated sites of the epicuticle. A strong adhesion on the beetle epicuticle due to the presence of the grease layer was measured. The influence of a semi-fluid greasy layer on male adhesion to female’s wings during copulation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hadley NF (1981) Cuticular lipids of terrestrial plants and arthropods: a comparison of their structure, composition, and waterproofing function. Biol Rev 56:23–47

    Article  CAS  Google Scholar 

  2. Beament JWL (1945) The cuticular lipoids of insects. J Exp Biol 21:115–131

    Google Scholar 

  3. Wigglesworth VB (1945) The insect cuticle. Biol Rev 23:408–451

    Article  Google Scholar 

  4. Lewis CT (1962) Diffusion of oil films over insects. Nature 183:904

    Article  Google Scholar 

  5. Noble-Nesbitt J (1992) Cuticular permeability and its control. In: Binnington K, Retnakaran A (eds) Physiology of the insect epidermis. CSIRO Australia, pp 252–283

    Google Scholar 

  6. Beament JWL (1958) The effect of temperature on the waterproofing mechanism of an insect. J Exp Biol 35:494–519

    CAS  Google Scholar 

  7. Gilby AR, Cox ME (1963) The cuticular lipids of the cockroach Periplaneta americana (L.). J Insect Physiol 9:671–681

    Article  CAS  Google Scholar 

  8. Richards AG (1951) The integument of arthropods. The chemical components and their properties, the anatomy and development, and the permeability. University of Minnesota Press, Minneapolis

    Google Scholar 

  9. Wolfe LS (1954) Studies of the development of the imaginal cuticle of Calliphora erythrocephala. J Cell Sci s3-95:67–78

    Google Scholar 

  10. Wigglesworth VB (1933) The physiology of the cuticle and of ecdysis in Rhodnius prolixus with special reference to the function of the oenocytes and of the dermal glands. Quart J Micr Sci 76:269

    Google Scholar 

  11. Hendricks GM, Hadley NF (1983) Structure of the cuticle of the common house cricket with reference to the location of lipids. Tissue Cell 15:761–779

    Article  CAS  Google Scholar 

  12. Vötsch W, Nicholson G, Müller R, Stierhof Y-D, Gorb S, Schwarz U (2002) Chemical composition of the attachment pad secretion of the locust Locusta migratoria. Insect Biochem Mol Biol 32:1605–1613

    Article  Google Scholar 

  13. Lees AD, Beament JWL (1948) An egg-waxing organ in ticks. Quart J Micr Sci 89:291–332

    CAS  Google Scholar 

  14. Gilby AR (1957) Studies of cuticular lipids of Arthropods. III. The chemical composition of the wax from Boophilus microplus. Arch Biochem Biophys 67:320–324

    Article  CAS  Google Scholar 

  15. Hadley NF (1981) Fine structure of the cuticle of the black widow spider with reference to surface lipids. Tissue Cell 13:805–817

    Article  CAS  Google Scholar 

  16. McConney ME, Schaber CF, Julian MD, Barth FG, Tsukruk VV (2007) Viscoelastic nanoscale properties of cuticle contribute to the high-pass properties of spider vibration receptor (Cupiennius salei Keys). J R Soc Interface 4:1135–1143

    Article  Google Scholar 

  17. Beament JWL (1955) Wax secretion in the cockroach. J Exp Biol 32:514–538

    Google Scholar 

  18. Gilby AR (1962) Absence of natural volatile solvents in cockroach grease. Nature 195:729

    Article  CAS  Google Scholar 

  19. Locke M (1964) The structure and formation of the integument in insects. In: Rockstein M (ed) The physiology of Insecta. Academic Press, New York, pp 123–213

    Google Scholar 

  20. Ramsay JA (1935) The evaporation of water from the cockroach. J Exp Biol 12:373

    Google Scholar 

  21. Neville AC (1975) Biology of the arthropod cuticle. Springer, Berlin

    Google Scholar 

  22. Espelie KE, Bernays EA, Brown JJ (1991) Plant and insect cuticular lipids serve as behavioural cues for insects. Arch Insect Biochem Physiol 17:223–233

    Article  CAS  Google Scholar 

  23. Lockey KH (1988) Lipids of the insect cuticle: origin, composition and function. Comp Biochem Physiol 89B:595–645

    CAS  Google Scholar 

  24. Tower WL (1906) An investigation of evolution in chrysomelid beetles of the genus Leptinotarsa. Carnegie Institution of Washington, Publication No. 48. Papers of the station for Experimental Evolution at Cold Spring Harbor, New York, No. 4, Press of Judd & Detweiler, Inc., Washington, DC

    Google Scholar 

  25. Gorb E (2007) Plant surfaces preventing insect adhesion. In: Brickwedde EF, Erb R, Lefèvre J, Schwake M (eds) Bionik und Nachhaltigkeit-Lernen von der Natur, 12. Internationale Sommerakademie St. Marienthal. Erich Schmidt Verlag GmbH & Co., Berlin, Initiativen zum Umweltschutz 68:103–110

    Google Scholar 

  26. Stork NE (1983) The adherence of beetle tarsal setae to glass. J Nat Hist 17:583–597

    Article  Google Scholar 

  27. Eisner T, Aneshansley DJ (2000) Defence by foot adhesion in a beetle (Hemisphaerota cyanea). Proc Nat Acad Sci 97:6568–6573

    Article  CAS  Google Scholar 

  28. Thibout E (1982) Le comportement sexuel du doryphore, Leptinotarsa decemlineata Say et son possible controle par l’homone juvenile et les corps allates. Behaviour80:199–217

    Article  Google Scholar 

  29. Szentesi Á (1985) Behavioral aspects of female guarding and inter-male conflict in the Colorado potato beetle. Proceedings of the Symposium on the Colorado potato beetle, XVIIth international congress of Entomology, Research Bull 704:127–137

    Google Scholar 

  30. Voigt D, Schuppert JM, Dattinger S, Gorb SN (2008) Sexualdimorphismus der Haftfähigkeit an rauen Oberflächen bei Leptinotarsa decemlineata Say (Coleoptera, Chrysomelidae). Mitt Dtsch Ges Allg Angew Ent 16:431–434

    Google Scholar 

  31. Voigt D, Schuppert JM, Dattinger S, Gorb SN (2008) Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera, Chrysomelidae) to rough substrates. J Insect Physiol 54:765–776

    Article  CAS  Google Scholar 

  32. Wyss U (2005) Lebensweise und Entwicklung des Kartoffelkäfers Leptinotarsa decemlineata. Video documentation. Institut für Phythopatologie, Christian-Albrechts-Universität zu Kiel, Germany, www.entofilm.com

    Google Scholar 

  33. Jaques RL (1988) The potato beetles. The genus Leptinotarsa in North America (Coleoptera: Chrysomelidae). Flora & Fauna Handbook, no. 3, E. J. Brill, Leiden, New York, Kobenhavn, Köln

    Google Scholar 

  34. Rivnay E (1928) External morphology of the Colorado beetle (Leptinotarsa decemlineata Say). J New York Entomol Soc 26:25–145

    Google Scholar 

  35. Scherge M, Gorb SN (2001) Biological micro- and nanotribology. Springer, Berlin Heidelberg New York

    Google Scholar 

  36. Langer MG, Ruppersberg JP, Gorb S (2004) Adhesion forces measured at the level of a terminal plate of the fly’s seta. Proc R Soc Lond B 271:2209–2215

    Article  Google Scholar 

  37. Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873

    Article  CAS  Google Scholar 

  38. Gorb SN (2006) Fly microdroplets viewed big: a Cryo-SEM approach. Microsc Today N9:38–39

    Google Scholar 

  39. Dubis E, Malínski E, Dubis A, Szafranek J, Nawrot J, Poplawski J, Wróbel JT (1987) Sex-dependent composition of cuticular hydrocarbons of the Colorado beetle, Leptinotarsa decemlineata Say. Comp Biochem Physiol A 87:839–843

    Article  Google Scholar 

  40. Nelson DR, Adams TS, Fatland CL (2003) Hydrocarbons in the surface wax of eggs and adults of the Colorado potato beetle, Leptinotarsa decemlineata. Comp Biochem Physiol B 134:447–466

    Article  Google Scholar 

  41. Mpho M, Seabrook WD (2003) Functions of antennae and palpi in the mating behaviour of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Bull Entomol Res 93:91–95

    Article  CAS  Google Scholar 

  42. Barbakadze N, Enders S, Gorb S, Arzt E (2006) Local mechanical properties of the head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J Exp Biol 209:722–730

    Article  CAS  Google Scholar 

  43. Stadler H, Mondon M, Then D, Jiao Y, Gorb SN, Ziegler C (2000) Scanning force microscopy measurements of the viscosity force of fly pad secretion. In: Scanning-probe microscopes and organic materials IX, Workshop, Hannover, 9.10.-11.11.2000, Abstract Booklet, edited by Kolb H-A, Enders O, Guckenberger R, Heckl WM, Hörber JKH, Rabe JP, and Ziegler C, Hannover.

    Google Scholar 

  44. Stadler H, Mondon M, Wallentin J, Jiao Y, Gorb S, Ziegler C. (2001) Viscosity force of the fly’s pad secretion measured by atomic force microscopy. Technische Biologie und Bionik 5, ed. by Nachtigall W. Mainz: Akademie der Wissenschaften und der Literatur. Biona Report 15:340–344

    Google Scholar 

  45. Wallentin J, Mondon M, Stadler H, Gorb SN, Ziegler C (1999) Rasterkraftspektroskopische Untersuchung der Adhäsionseigenschaften von Fliegensekret. In: Deutsche Physikalische Gesellschaft e.V., Frühjahrstagung des Arbeitskreises Festkörperphysik bei der DPG, Regensburg, März 27–31, 2000, Abstract Booklet, Regensburg, p 807

    Google Scholar 

  46. Wallentin J, Mondon M, Stadler H, Gorb SN, Ziegler C (1999) The secretes of fly secretes: adhesion properties probed by force-distance curves. In: Scanning-probe microscopes and organic materials VIII, Workshop, Basel, October 4–6, 1999, Abstract Booklet, ed. by Müller DJ, and Knapp HF, Basel, 1999, p 14

    Google Scholar 

  47. Gorb S (2001) Attachment devices of insect cuticle. Kluwer Academic Publishers,Dordrecht, p 305

    Google Scholar 

  48. Ishii S (1987) Adhesion of a leaf feeding ladybird Epilachna vigintioctomaculata (Coleoptera: Coccinellidae) on a vertically smooth surface. Appl Entomol Zool 22:222–228

    Google Scholar 

  49. Walker G, Yule AB, Ratcliffe J (1985) The adhesive organ of the blowfly, Calliphora vomitoria: a functional approach (Diptera: Calliphoridae). J Zool Lond A 205:297–307

    Google Scholar 

  50. Attygalle AB, Aneshansley DJ, Meinwald J, Eisner T (2000) Defence by foot adhesion in a chrysomelid beetle (Hemisphaerota cyanea): characterization of the adhesive oil. Zoology 103:1–6

    Google Scholar 

  51. Alcock, J (2006) Animal behavior. An evolutionary approach, 8th edn. Elsevier Spektrum Akademischer Verlag, p 577

    Google Scholar 

  52. Härdling R, Bergsten J (2006) Nonrandom mating preserves intrasexual polymorphism and stops population differentiation in sexual conflict. Am Nat 167:401–409

    Article  Google Scholar 

  53. Arnquist G, Nilsson T (2000) The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav 60:145–164.

    Article  Google Scholar 

  54. Miller KB (2003) The phylogeny of diving beetles (Coleoptera: Dytiscidae) and the evolution of sexual conflict. Biol J Linn Soc 79:359–388

    Article  Google Scholar 

  55. Orsetti DM, Rutowski RL (2003) No material benefits, and a fertilization cost, for multiple mating by female leaf beetles. Anim Behav 66:477–484

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Voigt, D., Peisker, H., Gorb, S. (2009). Visualization of Epicuticular Grease on the Covering Wings in the Colorado Potato Beetle: A Scanning Probe Approach. In: Bhushan, B., Fuchs, H. (eds) Applied Scanning Probe Methods XIII. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85049-6_1

Download citation

Publish with us

Policies and ethics