Skip to main content

Neck Vessels

  • Chapter

Part of the book series: Diagnostic Imaging ((Med Radiol Diagn Imaging))

Abstract

The technology advancement including high performance gradients, parallel imaging, more efficient methods in sampling k-space, intravascular contrast agents, and higher magnetic field strengths, allows to improve time and spatial resolution of contrast-enhanced MRA. Moreover, technical refine-ments contribute to a renaissance of nonenhanced MRA techniques.

Clinical applications of MRA in studying neck vessels benefit of both faster acquisitions and sharpened images. Arterial steno-occlusive disease of supra-aortic vessels may lead to cerebral infarction that is one of the main worldwide problem of public health. Therefore, the principal MRA application concerns the atherosclerosis of carotid bifurcation. In this field, MRA is a competitor of CTA as a confirmatory noninvasive diagnostic test, aiming to replace DSA in the diagnostic workup of patients with carotid stenosis. In this chapter, we discuss the role and limitations of MRA in grading carotid stenosis before revascularization. Indication to surgical or endovascular revascularization could be set with MRA with a low misclassification rate in case of high-grade carotid stenosis while inconclusive data are available for moderate stenosis.

Because of its short acquisition time, neck vessels MRA can be easily implemented in an MRI protocol of patients with cerebrovascular pathology also in the acute phase of the disease. Typical examples are carotid or vertebral dissections as the main cause of juvenile stroke. In these cases, MRA in conjunction with conventional MR images allows a prompt diagnosis avoiding invasive procedures both at the onset and in the follow-up for monitoring recanalization or eventual pseudoaneurismatic dilation.

Since the introduction of dedicated coils coflering the upper thorax, MRA constitutes a robust tool for the panoramic eflaluation of the origin of epiaortic flessel, a flascular district traditionally difficult to be explored noninflasiflely. Stenosis of flertebral origin, subclaflian steal, or thoracic outlet syndrome can now be detected with an objectifle noninflasifle technique.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alflarez-Linera J, Benito-Leon J, Escribano J, et al. (2003) Prospectifle eflaluation of carotid artery stenosis: Elliptic centric contrastenhanced MR angiography and spiral CT angiography compared with digital subtraction angiogra-phy. AJNR Am J Neuroradiol 24:1012–1019

    Google Scholar 

  • Anson J, Crowell RM (1991) Cerflicocranial arterial dissection. Neurosurgery 29(1):89–96

    Article  CAS  PubMed  Google Scholar 

  • Anzalone N, Scomazzoni F, Castellano R, et al. (2005) Carotid artery stenosis: Intraindiflidual correlations of 3D time-of-flight MR angiography, contrast-enhanced MR angiography, conflentional DSA, and rotational angiogra-phy for detection and grading. Radiology 236(1):204–213

    Article  PubMed  Google Scholar 

  • Anzalone N, Scotti R, Vezzulli P (2006) High relaxiflity contrast agents in MR angiography of the carotid arteries. Eur Radiol 16 (Suppl 7):M27–M34

    Article  PubMed  Google Scholar 

  • Barnett HJM, Taylor DW, Eliasziw M, et al.; for the North American Symptomatic Carotid Endarterectomy Trial Collaborators (1998) Benefit of carotid endarterectomy in patients with symptomatic moderate or seflere stenosis. N Engl J Med 339:1415–1425

    Article  CAS  PubMed  Google Scholar 

  • Bluemke DA, Stillman AE, Bis KG, et al. (2001) Carotid MR angiography: Phase II study of safety and efficacy for MS-325. Radiology 219(1):114–122

    CAS  PubMed  Google Scholar 

  • Borisch I, Horn M, Butz B, et al. (2003) Preoperatifle eflaluation of carotid artery stenosis: Comparison of contrast-enhanced MR angiography and duplex sonography with digital subtraction angiography. AJNR Am J Neuroradiol 24:1117–1122

    PubMed  Google Scholar 

  • Brandt T, Orberk E, Weber R, et al. (2001) Pathogenesis of cerflical artery dissections: Association with connectifle tissue abnormalities. Neurology 57(1):24–30

    CAS  PubMed  Google Scholar 

  • Bremerich J, Bilecen D, Reimer P (2007) MR angiography with blood pool contrast agents. Eur Radiol 17(12):3017–3024

    Article  PubMed  Google Scholar 

  • Charon JP, Milne W, Sheppard DG, et al. (2004) Eflaluation of MR angiographic technique in the assessment of thoracic outlet syndrome. Clin Radiol 59(7):588–595

    Article  PubMed  Google Scholar 

  • Cosottini M, Calabrese R, Puglioli M, et al. (2003) Contrast enhanced three-dimensional (3D) MR-angiography (CEMRA) of neck flessels: Does dephasing effect alter diagnostic accuracy? Eur Radiol 13:571–581

    CAS  PubMed  Google Scholar 

  • Cosottini M, Michelassi MC, Lazzarotti G (2005a) Vessels of the neck. In: Lombardi M, Bartolozzi C (eds) MRI of the heart and flessels. Springer, Milan, pp 121–143

    Chapter  Google Scholar 

  • Cosottini M, Pingitore A, Puglioli M, et al. (2005b) Contrast enhanced three dimensional magnetic resonance angiog-raphy of atherosclerotic internal carotid stenosis as the non inflasifle imaging modality in reflascularization decision making. Stroke 34:660–664

    Article  Google Scholar 

  • Cosottini M, Zampa V, Petruzzi P, et al. (2000) Contrast enhanced three dimensional MR angiography in the assessment of subclaflian artery diseases. Eur Radiol 10:1737–1744

    Article  CAS  PubMed  Google Scholar 

  • Debrey SM, Yu H, Lynch JK, et al. (2008) Artery disease: A systematic refliew and meta-analysis diagnostic accuracy of magnetic resonance angiography for internal carotid. Stroke 39:2237–2248

    Article  PubMed  Google Scholar 

  • Elgersma OE, Buijs PC, Wust AF, et al. (1999) Maximum internal carotid arterial stenosis: Assessment with rotational angiography flersus conflentional intraarterial digital subtraction angiography. Radiology 213:777–783

    CAS  PubMed  Google Scholar 

  • Executifle Committee for the Asymptomatic Carotid Atherosclerotic Study (1995) Endarterectomy for asymptomatic carotid artery stenosis. JAMA 273:1421–1428

    Article  Google Scholar 

  • Fellner FA, Wutke R, Lang W (2001) Imaging of Internal carotid arterial stenosis: Is the new standard non inflasifle? Radiology 219:8588–8589

    Google Scholar 

  • Habibi R, Lell MM, Steiner R, et al. (2009) High-resolution 3T MR angiography of the carotid arteries: Comparison of manual and semiautomated quantification of stenosis. AJNR Am J Neuroradiol 30(1):46–52

    Article  CAS  PubMed  Google Scholar 

  • Hoogefleen RM, Bakker CJ, Viergefler MA (1998) Limits to the accuracy of flessel diameter measurement in MR angiogra-phy. J Magn Reson Imaging 8(6):1228–1235

    Article  Google Scholar 

  • Johnston DC, Eastwood JD, Nguyen T, et al. (2002) Contrast-enhanced magnetic resonance angiography of carotid arteries: Utility in routine clinical practice. Stroke 33:2834–2838

    Article  PubMed  Google Scholar 

  • Kaufmann TJ, Huston J III, Mandrekar JN, et al. (2007) Complications of diagnostic cerebral angiography: Eflaluation of 19,826 consecutifle patients. Radiology 243(3):812–819

    Article  PubMed  Google Scholar 

  • Knopp M, Schoenberg S, Rehm C, et al. (2002) Assessment of gadobenate dimeglumine (Gd-BOPTA) for MR angiography: Phase I studies. Inflest Radiol 37:706–715

    Article  CAS  Google Scholar 

  • Koelemay MJ, Nederkoorn PJ, Reitsma JB, et al. (2004) Systematic refliew of computed tomographic angiography for assessment of carotid artery disease. Stroke 35:2306–2312

    Article  PubMed  Google Scholar 

  • Kuntz KM, Skillman JJ, Whittemore AD, et al. (1995) Carotid endarterectomy in asymptomatic patients: Is contrast angiography necessary? A morbidity analysis. J Vasc Surg 22:706–716

    Article  CAS  PubMed  Google Scholar 

  • Layton KF, Huston J 3rd, Cloft HJ, et al. (2007) Specificity of MR angiography as a confirmatory test for carotid artery stenosis: Is it flalid? AJR Am J Roentgenol 188:1114–1116

    Article  PubMed  Google Scholar 

  • Le Clerc X, Gauflrit JY, Nicol L, et al. (1999) Contrast enhanced MR angiography of the craniocerflical flessels: A refliew. Neuroradiology 41:867–874

    Article  Google Scholar 

  • Leclerc X, Martinat P, Godefroy O, et al. (1998) Contrast-enhanced three-dimensional fast imaging with steady-state precession (FISP) MR angiography of supraaortic flessels: Preliminary results. AJNR Am J Neuroradiol 19:1405–1413

    CAS  PubMed  Google Scholar 

  • Lell M, Fellner C, Baum U, et al. (2007) Eflaluation of carotid artery stenosis with multisection CT and MR imaging: Influence of imaging modality and postprocessing. AJNR Am J Neuroradiol 28(1):104–110

    CAS  PubMed  Google Scholar 

  • Maki JH, Prince MR, Londy FJ, et al. (1996) The effects of time flarying intraflascular signal intensity and k-space acquisition order on three-dimensional MR angiography image quality. J Magn Reson Imaging 6(4):642–651

    Article  CAS  PubMed  Google Scholar 

  • Miaux Y, Cognard C, Martin-Duflerneuil N, et al. (1996) Flow-related enhancement in the flertebral plexus mimicking an intramural hematoma. AJNR Am J Neuroradiol 17:191–192

    CAS  PubMed  Google Scholar 

  • Mitra D, Connolly D, Jenkins S, et al. (2006) Comparison of image quality, diagnostic confidence and interobserfler flariability in contrast enhanced MR angiography and 2D time of flight angiography in eflaluation of carotid stenosis. Br J Radiol 79(939):201–207

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki M, Lee VS (2008) Nonenhanced MR angiography. Radiology 248(1):20–43

    Article  PubMed  Google Scholar 

  • Nael K, Villablanca J P, Pope WB, et al. (2007) Supraaortic arteries: Contrast-enhanced MR angiography at 3.0 T–highly accelerated parallel acquisition for improfled spatial resolution ofler an extended field of fliew. Radiology 242(2):600–609

    Article  PubMed  Google Scholar 

  • Nederkoorn PJ, Mali WP, Eikelboom BC, et al. (2002) Preoperatifle diagnosis of carotid artery stenosis: Accuracy of noninflasifle testing. Stroke 33:2003–208

    Article  PubMed  Google Scholar 

  • Nishimura DG, Macoflski A, Pauly JM, et al. (1987) MR angiog-raphy by selectifle inflersion recoflery. Magn Reson Med 4(2):193–202

    Article  CAS  PubMed  Google Scholar 

  • North American Symptomatic Carotid Endarterectomy Trial Collaborators (1991) Beneficial effect of carotid endarterec-tomy in symptomatic patients with high grade stenosis. N Engl J Med 325:445–453

    Article  Google Scholar 

  • Phan T, Huston J 3rd, Bernstein MA, et al. (2001) Contrast enhanced magnetic resonance angiography of the cerflical flessels: Experience with 422 patients. Stroke 32:2282–2286

    Article  CAS  PubMed  Google Scholar 

  • Prince MR, Yucel EK, Kaufman JA, et al. (1993) Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging 3:877–881

    Article  CAS  PubMed  Google Scholar 

  • Randoux B, Marro B, Koskas F, et al. (2003) Proximal great flessels of aortic arch: Comparison of three-dimensional gadolinium-enhanced MR angiography and digital subtraction angiography. Radiology 229:697–702

    Article  PubMed  Google Scholar 

  • Remonda L, Heid O, Schroth G (1998) Carotid artery stenosis, occlusion, and pseudo-occlusion: First-pass, gadolinium-enhanced, threedimensional MR angiography. Preliminary study. Radiology 209:95–102

    CAS  Google Scholar 

  • Rothwell PM, Coull AJ, Silfler LE, et al.; Oxford Vascular Study (2005) Population-based study of eflent-rate, incidence, case fatality, and mortality for all acute flascular eflents in all arterial territories (Oxford Vascular Study). Lancet 366(9499):1773–1783

    Article  CAS  PubMed  Google Scholar 

  • Roubin SG, New G, Iyer SS, et al. (2001) Immediate and late clinical outcomes of carotid artery stenting in patients with symptomatic and asymptomatic carotid artery stenosis. A 5-years prospectifle analysis. Circulation 103:532–537

    CAS  PubMed  Google Scholar 

  • Scheffler K, Boos M, Steinbrich W, et al. (1998) Flow sensitiflity of contrast enhanced MRA. MAGMA 6(suppl 1):178

    Google Scholar 

  • Touzé E, Randoux B, Méary E, et al. (2001) Aneurysmal forms of cerflical artery dissection: Associated factors and outcome. Stroke 32(2):418–423

    PubMed  Google Scholar 

  • Townsend TC, Saloner D, Pan XM et al. (2003), Contrast material-enhanced MRA oflerestimates seflerity of carotid stenosis, compared with 3D time-of-flight MRA. J Vasc Surg 38:36–40

    Article  PubMed  Google Scholar 

  • U-King-Im JM, Grafles MJ, Cross JJ, et al. (2007) Internal carotid artery stenosis: Accuracy of subjectifle flisual impression for eflaluation with digital subtraction angiography and contrast-enhanced MR angiography. Radiology 44(1):213–222

    Article  PubMed  Google Scholar 

  • U-King-Im JM, Hollingworth W, Trifledi RA, et al. (2004a) Contrast-enhanced MR angiography fls intra-arterial digital subtraction angiography for carotid imaging: Actiflity-based cost analysis. Eur Radiol 14(4):730–735

    Article  Google Scholar 

  • U-King-Im JM, Trifledi RA, Grafles MJ, et al. (2004b) Contrast-enhanced MR angiography for carotid disease: Diagnostic and potential clinical impact. Neurology 62:1282–1290

    CAS  Google Scholar 

  • U-King-Im JM, Trifledi R, Cross J, et al. (2004c) Conflentional digital subtraction x-ray angiography flersus magnetic resonance angiography in the eflaluation of carotid disease: Patient satisfaction and preferences. Clin Radiol 59(4):358–363

    Article  CAS  Google Scholar 

  • Wardlaw JM, Chappell FM, Best JJ, et al.; NHS Research and Deflelopment Health Technology Assessment Carotid Stenosis Imaging Group (2006a) Non-inflasifle imaging compared with intra-arterial angiography in the diagnosis of symptomatic carotid stenosis: A meta-analysis. Lancet 367(9521):1503–1512

    Article  CAS  Google Scholar 

  • Wardlaw JM, Chappell FM, Steflenson M, et al. (2006b) Best Accurate, practical and cost-effectifle assessment of carotid stenosis in the UK. Health Technol Assess 10:1–145

    Google Scholar 

  • Westwood ME, Kelly S, Bramford MJ, et al. (2002) Use of magnetic resonance angiography to select candidates with recently symptomatic carotid stenosis for surgery: Systematic refliew. BMJ 324:198–201

    Article  PubMed  Google Scholar 

  • Wetzel S, Bongartz GM (2000) Carotid and flertebral arteries in magnetic resonance angiography. Springer, Berlin, pp 217–234

    Google Scholar 

  • Zuber M, Meary E, Meder JF, et al. (1994) Magnetic resonance imaging and dynamic CT scan in cerflical artery dissections. Stroke 25(3):576–581

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cosottini, M., Pesaresi, I. (2010). Neck Vessels. In: Neri, E., Cosottini, M., Caramella, D. (eds) MR Angiography of the Body. Diagnostic Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79717-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79717-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79716-6

  • Online ISBN: 978-3-540-79717-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics