Skip to main content

Lectures on Black Holes, Topological Strings, and Quantum Attractors (2.0)

  • Chapter
  • First Online:
Book cover Supersymmetric Mechanics - Vol. 3

Part of the book series: Lecture Notes in Physics ((LNP,volume 755))

Abstract

In these lecture notes, we review some recent developments on the relation between the macroscopic entropy of four-dimensional BPS black holes and the microscopic counting of states beyond the thermodynamical, large charge limit. After a brief overview of charged black holes in supergravity and string theory, we give an extensive introduction to special and very special geometry, attractor flows and topological string theory, including holomorphic anomalies. We then expose the Ooguri-Strominger-Vafa (OSV) conjecture which relates microscopic degeneracies to the topological string amplitude, and review precision tests of this formula on “small” black holes. Finally, motivated by a holographic interpretation of the OSV conjecture, we give a systematic approach to the radial quantization of BPS black holes (i.e. quantum attractors). This suggests the existence of a one-parameter generalization of the topological string amplitude and provides a general framework for constructing automorphic partition functions for black hole degeneracies in theories with sufficient degree of symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. A. Hughes, “Trust but verify: The case for astrophysical black holes,” ECONF C0507252 (2005) L006, hep-ph/0511217.

    Google Scholar 

  2. T. Banks, “A critique of pure string theory: Heterodox opinions of diverse dimensions,” hep-th/0306074.

    Google Scholar 

  3. A. Strominger and C. Vafa, “Microscopic origin of the Bekenstein-Hawking entropy,” Phys. Lett. B379 (1996) 99–104, hep-th/9601029.

    ADS  MathSciNet  Google Scholar 

  4. H. Ooguri, A. Strominger, and C. Vafa, “Black hole attractors and the topological string,” Phys. Rev. D70 (2004) 106007, hep-th/0405146.

    ADS  MathSciNet  Google Scholar 

  5. A. Dabholkar, F. Denef, G. W. Moore, and B. Pioline, “Exact and asymptotic degeneracies of small black holes,” JHEP 08 (2005) 021, hep-th/0502157.

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Dabholkar, F. Denef, G. W. Moore, and B. Pioline, “Precision counting of small black holes,” JHEP 10 (2005) 096, hep-th/0507014.

    Article  ADS  MathSciNet  Google Scholar 

  7. H. Ooguri, C. Vafa, and E. P. Verlinde, “Hartle-Hawking wave-function for flux compactifications,” hep-th/0502211.

    Google Scholar 

  8. B. Pioline, “BPS black hole degeneracies and minimal automorphic representations,” JHEP 0508 (2005) 071, hep-th/0506228.

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Gunaydin, A. Neitzke, and B. Pioline, “Topological wave functions and heat equations,” hep-th/0607200.

    Google Scholar 

  10. M. Gunaydin, A. Neitzke, B. Pioline, and A. Waldron, “Bps black holes, quantum attractor flows and automorphic forms,” Phys. Rev. D73 (2006) 084019, hep-th/0512296.

    ADS  MathSciNet  Google Scholar 

  11. A. Neitzke, B. Pioline, and S. Vandoren, “Twistors and black holes,” hep-th/0701214.

    Google Scholar 

  12. M. Gunaydin, A. Neitzke, B. Pioline, and A. Waldron, “Quantum attractor flows,” arXiv:0707.0267 [hep-th].

    Google Scholar 

  13. M. Gunaydin, A. Neitzke, O. Pavlyk, and B. Pioline, “Quasi-conformal actions, quaternionic discrete series and twistors: su(2, 1) and g2(2),” arXiv:0707.1669 [hep-th].

    Google Scholar 

  14. P. K. Townsend, “Black holes,” gr-qc/9707012.

    Google Scholar 

  15. T. Damour, “The entropy of black holes: A primer,” hep-th/0401160.

    Google Scholar 

  16. S. W. Hawking, “Particle creation by black holes,” Commun. Math. Phys. 43 (1975) 199–220.

    Article  MathSciNet  ADS  Google Scholar 

  17. W. G. Unruh, “Notes on black hole evaporation,” Phys. Rev. D14 (1976) 870.

    ADS  Google Scholar 

  18. R. Wald, “Black hole thermodynamics,” Living Rev. Relativity 4 (2001) http://www.livingreviews.org/lrr-2001-6.

    Google Scholar 

  19. A. Strominger, “Ads(2) quantum gravity and string theory,” JHEP 01 (1999) 007, hep-th/9809027.

    Article  MathSciNet  ADS  Google Scholar 

  20. M. Cvetic and D. Youm, “Dyonic bps saturated black holes of heterotic string on a six torus,” Phys. Rev. D53 (1996) 584–588, hep-th/9507090.

    ADS  MathSciNet  Google Scholar 

  21. M. Cvetic and D. Youm, “All the static spherically symmetric black holes of heterotic string on a six torus,” Nucl. Phys. B472 (1996) 249–267, hep-th/9512127.

    Article  ADS  MathSciNet  Google Scholar 

  22. E. Witten and D. I. Olive, “Supersymmetry algebras that include topological charges,” Phys. Lett. B78 (1978) 97.

    ADS  Google Scholar 

  23. F. Larsen and F. Wilczek, “Internal structure of black holes,” Phys. Lett. B375 (1996) 37–42, hep-th/9511064.

    ADS  MathSciNet  Google Scholar 

  24. P. K. Tripathy and S. P. Trivedi, “Non-supersymmetric attractors in string theory,” JHEP 03 (2006) 022, hep-th/0511117.

    Article  ADS  MathSciNet  Google Scholar 

  25. K. Goldstein, N. Iizuka, R. P. Jena, and S. P. Trivedi, “Non-supersymmetric attractors,” Phys. Rev. D72 (2005) 124021, hep-th/0507096.

    ADS  MathSciNet  Google Scholar 

  26. R. Kallosh, “New attractors,” JHEP 12 (2005) 022, hep-th/0510024.

    Article  ADS  MathSciNet  Google Scholar 

  27. R. Kallosh, N. Sivanandam, and M. Soroush, “The non-bps black hole attractor equation,” JHEP 03 (2006) 060, hep-th/0602005.

    Article  ADS  MathSciNet  Google Scholar 

  28. B. Sahoo and A. Sen, “Higher derivative corrections to non-supersymmetric extremal black holes in n=2 supergravity,” hep-th/0603149.

    Google Scholar 

  29. N. Arkani-Hamed, L. Motl, A. Nicolis, and C. Vafa, “The string landscape, black holes and gravity as the weakest force,” hep-th/0601001.

    Google Scholar 

  30. P. Kaura and A. Misra, “On the existence of non-supersymmetric black hole attractors for two-parameter calabi-yau’s and attractor equations,” hep-th/0607132.

    Google Scholar 

  31. Y. Kats, L. Motl, and M. Padi, “Higher-order corrections to mass-charge relation of extremal black holes,” hep-th/0606100.

    Google Scholar 

  32. J. M. Maldacena, “Black holes in string theory,” hep-th/9607235.

    Google Scholar 

  33. A. W. Peet, “Tasi lectures on black holes in string theory,” hep-th/0008241.

    Google Scholar 

  34. J. R. David, G. Mandal, and S. R. Wadia, “Microscopic formulation of black holes in string theory,” Phys. Rept. 369 (2002) 549–686, hep-th/0203048.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. S. D. Mathur, “The quantum structure of black holes,” Class. Quant. Grav. 23 (2006) R115, hep-th/0510180.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. J. M. Maldacena and A. Strominger, “Statistical entropy of four-dimensional extremal black holes,” Phys. Rev. Lett. 77 (1996) 428–429, hep-th/9603060.

    Article  ADS  Google Scholar 

  37. C. V. Johnson, R. R. Khuri, and R. C. Myers, “Entropy of 4d extremal black holes,” Phys. Lett. B378 (1996) 78–86, hep-th/9603061.

    ADS  MathSciNet  Google Scholar 

  38. J. M. Maldacena, A. Strominger, and E. Witten, “Black hole entropy in M-theory,” JHEP 12 (1997) 002, hep-th/9711053.

    Article  ADS  MathSciNet  Google Scholar 

  39. R. Dijkgraaf, H. L. Verlinde, and E. P. Verlinde, “Counting dyons in N=4 string theory,” Nucl. Phys. B484 (1997) 543–561, hep-th/9607026.

    Article  MathSciNet  ADS  Google Scholar 

  40. M. Cvetic and A. A. Tseytlin, “Solitonic strings and bps saturated dyonic black holes,” Phys. Rev. D53 (1996) 5619–5633, hep-th/9512031.

    ADS  MathSciNet  Google Scholar 

  41. G. L. Cardoso, B. de Wit, J. Kappeli, and T. Mohaupt, “Asymptotic degeneracy of dyonic N=4 string states and black hole entropy,” hep-th/0412287.

    Google Scholar 

  42. D. Shih, A. Strominger, and X. Yin, “Recounting dyons in N=4 string theory,” hep-th/0505094.

    Google Scholar 

  43. D. P. Jatkar and A. Sen, “Dyon spectrum in chl models,” JHEP 04 (2006) 018, hep-th/0510147.

    Article  ADS  MathSciNet  Google Scholar 

  44. J. R. David, D. P. Jatkar, and A. Sen, “Product representation of dyon partition function in chl models,” hep-th/0602254.

    Google Scholar 

  45. A. Dabholkar and S. Nampuri, “Spectrum of dyons and black holes in chl orbifolds using borcherds lift,” hep-th/0603066.

    Google Scholar 

  46. D. Gaiotto, “Re-recounting dyons in N=4 string theory,” hep-th/0506249.

    Google Scholar 

  47. A. Ceresole, R. D’Auria, and S. Ferrara, “The symplectic structure of n=2 supergravity and its central extension,” Nucl. Phys. Proc. Suppl. 46 (1996) 67–74, hep-th/9509160.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. P. Fre, “Supersymmetry and first order equations for extremal states: Monopoles, hyperinstantons, black holes and p- branes,” Nucl. Phys. Proc. Suppl. 57 (1997) 52–64, hep-th/9701054.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  49. G. W. Moore, “Arithmetic and attractors,” hep-th/9807087.

    Google Scholar 

  50. T. Mohaupt, “Black hole entropy, special geometry and strings,” Fortsch. Phys. 49 (2001) 3–161, hep-th/0007195.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, and E. Zaslow, Mirror symmetry, vol. 1 of Clay Mathematics Monographs. American Mathematical Society, Providence, RI, 2003. With a preface by Vafa.

    Google Scholar 

  52. M. Huebscher, P. Meessen, and T. Ortin, “Supersymmetric solutions of n=2 d=4 sugra: the whole ungauged shebang,” hep-th/0606281.

    Google Scholar 

  53. S. Ferrara, R. Kallosh, and A. Strominger, “N=2 extremal black holes,”Phys. Rev. D52 (1995) 5412–5416, hep-th/9508072.

    ADS  MathSciNet  Google Scholar 

  54. S. Ferrara and R. Kallosh, “Universality of supersymmetric attractors,” Phys. Rev. D54 (1996) 1525–1534, hep-th/9603090.

    ADS  MathSciNet  Google Scholar 

  55. S. Ferrara, G. W. Gibbons, and R. Kallosh, “Black holes and critical points in moduli space,” Nucl. Phys. B500 (1997) 75–93, hep-th/9702103.

    Article  MathSciNet  ADS  Google Scholar 

  56. F. Denef, “Supergravity flows and d-brane stability,” JHEP 08 (2000) 050, hep-th/0005049.

    Article  ADS  MathSciNet  Google Scholar 

  57. K. Behrndt et al., “Classical and quantum n=2 supersymmetric black holes,” Nucl. Phys. B488 (1997) 236–260, hep-th/9610105.

    MathSciNet  ADS  Google Scholar 

  58. G. Lopes Cardoso, B. de Wit, J. Kappeli, and T. Mohaupt, “Black hole partition functions and duality,” JHEP 03 (2006) 074, hep-th/0601108.

    Google Scholar 

  59. M. Gunaydin, G. Sierra, and P. K. Townsend, “The geometry of N=2 Maxwell-Einstein supergravity and Jordan algebras,” Nucl. Phys. B242 (1984) 244.

    Article  ADS  MathSciNet  Google Scholar 

  60. K. McCrimmon, “Jordan algebras and their applications,” Bull. Amer. Math. Soc. 84 (1978), no. 4, 612–627.

    Article  MATH  MathSciNet  Google Scholar 

  61. P. Jordan, J. von Neumann, and E. P. Wigner, “On an algebraic generalization of the quantum mechanical formalism,” Annals Math. 35 (1934) 29–64.

    Article  Google Scholar 

  62. M. Gunaydin, G. Sierra, and P. K. Townsend, “Exceptional supergravity theories and the magic square,” Phys. Lett. B133 (1983) 72.

    ADS  MathSciNet  Google Scholar 

  63. S. Ferrara, E. G. Gimon, and R. Kallosh, “Magic supergravities, n=8 and black hole composites,” hep-th/0606211.

    Google Scholar 

  64. S. Ferrara, J. A. Harvey, A. Strominger, and C. Vafa, “Second quantized mirror symmetry,” Phys. Lett. B361 (1995) 59–65, hep-th/9505162.

    ADS  MathSciNet  Google Scholar 

  65. S. Ferrara and M. Porrati, “The manifolds of scalar background fields in Zn orbifolds,” Phys. Lett. B216 (1989) 289.

    ADS  MathSciNet  Google Scholar 

  66. D. Etingof P., Kazhdan and A. Polishchuk, “When is the Fourier transform of an elementary function elementary?,” math.AG/0003009.

    Google Scholar 

  67. B. Pioline, “Cubic free field theory,” hep-th/0302043.

    Google Scholar 

  68. M. J. Duff, “String triality, black hole entropy and cayley’s hyperdeterminant,” hep-th/0601134.

    Google Scholar 

  69. R. Kallosh and A. Linde, “Strings, black holes, and quantum information,” Phys. Rev. D73 (2006) 104033, hep-th/0602061.

    ADS  MathSciNet  Google Scholar 

  70. P. Levay, “Stringy black holes and the geometry of entanglement,” Phys. Rev. D74 (2006) 024030, hep-th/0603136.

    ADS  MathSciNet  Google Scholar 

  71. R. Kallosh and B. Kol, “E7Symmetric area of the black hole horizon,” Phys. Rev. D53 (1996) 5344–5348, hep-th/9602014.

    ADS  MathSciNet  Google Scholar 

  72. D. Gaiotto, A. Strominger, and X. Yin, “New connections between 4d and 5d black holes,” JHEP 02 (2006) 024, hep-th/0503217.

    Article  ADS  MathSciNet  Google Scholar 

  73. E. Witten, “Mirror manifolds and topological field theory,” hep-th/9112056.

    Google Scholar 

  74. M. Marino, “Chern-simons theory and topological strings,” Rev. Mod. Phys. 77 (2005) 675–720, hep-th/0406005.

    Article  ADS  MathSciNet  Google Scholar 

  75. M. Marino, “Les houches lectures on matrix models and topological strings,” hep-th/0410165.

    Google Scholar 

  76. A. Neitzke and C. Vafa, “Topological strings and their physical applications,” hep-th/0410178.

    Google Scholar 

  77. M. Vonk, “A mini-course on topological trings,” hep-th/0504147.

    Google Scholar 

  78. S. Cordes, G. W. Moore, and S. Ramgoolam, “Lectures on 2-d yang-mills theory, equivariant cohomology and topological field theories,” Nucl. Phys. Proc. Suppl. 41 (1995) 184–244, hep-th/9411210.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  79. M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, “Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes,” Commun. Math. Phys. 165 (1994) 311–428, hep-th/9309140.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  80. R. Gopakumar and C. Vafa, “M-theory and topological strings. I,” hep-th/9809187.

    Google Scholar 

  81. R. Gopakumar and C. Vafa, “M-theory and topological strings. II,” hep-th/9812127.

    Google Scholar 

  82. M. T. Grisaru, A. E. M. van de Ven, and D. Zanon, “Four loop divergences for the $\mathrm{n}=1$ supersymmetric nonlinear sigma model in two-dimensions,” Nucl. Phys. B277 (1986) 409.

    Article  ADS  Google Scholar 

  83. P. Candelas, X. C. De La Ossa, P. S. Green, and L. Parkes, “A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory,” Nucl. Phys. B359 (1991) 21–74.

    Article  ADS  MathSciNet  Google Scholar 

  84. I. Antoniadis, S. Ferrara, R. Minasian, and K. S. Narain, “R4 couplings in M- and type II theories on Calabi-Yau spaces,” Nucl. Phys. B507 (1997) 571–588, hep-th/9707013.

    Article  MathSciNet  ADS  Google Scholar 

  85. M. Marino and G. W. Moore, “Counting higher genus curves in a Calabi-Yau manifold,” Nucl. Phys. B543 (1999) 592–614, hep-th/9808131.

    Article  ADS  MathSciNet  Google Scholar 

  86. C. Faber and R. Pandharipande, “Hodge integrals and Gromov-Witten theory,” math.AG/9810173.

    Google Scholar 

  87. R. P. Thomas, “Gauge theories on Calabi-Yau manifolds,” 1997. Available as of July 2006 at http://www.ma.ic.ac.uk/˜rpwt/thesis.pdf.

    Google Scholar 

  88. N. A. Nekrasov, H. Ooguri, and C. Vafa, “S-duality and topological strings,” hep-th/0403167.

    Google Scholar 

  89. A. Kapustin, “Gauge theory, topological strings, and S-duality,” JHEP 09 (2004) 034, hep-th/0404041.

    Article  ADS  MathSciNet  Google Scholar 

  90. D. Maulik, N. A. Nekrasov, A. Okounkov, and R. Pandharipande, “Gromov-Witten theory and Donaldson-Thomas theory,” math.AG/0312059.

    Google Scholar 

  91. D. Maulik, N. A. Nekrasov, A. Okounkov, and R. Pandharipande, “Gromov-Witten theory and Donaldson-Thomas theory, II,” math.AG/0406092.

    Google Scholar 

  92. A. Okounkov and R. Pandharipande, “The local Donaldson-Thomas theory of curves,” math.AG/0512573.

    Google Scholar 

  93. E. Verlinde, “Attractors and the holomorphic anomaly,” hep-th/0412139.

    Google Scholar 

  94. E. Witten, “Quantum background independence in string theory,” hep-th/9306122.

    Google Scholar 

  95. A. A. Gerasimov and S. L. Shatashvili, “Towards integrability of topological strings. i: Three- forms on calabi-yau manifolds,” JHEP 11 (2004) 074, hep-th/0409238.

    Article  ADS  MathSciNet  Google Scholar 

  96. E. D’Hoker and D. H. Phong, “Complex geometry and supergeometry,” hep-th/0512197.

    Google Scholar 

  97. N. Berkovits, “Ictp lectures on covariant quantization of the superstring,” hep-th/0209059.

    Google Scholar 

  98. I. Antoniadis, E. Gava, K. S. Narain, and T. R. Taylor, “Topological amplitudes in string theory,” Nucl. Phys. B413 (1994) 162–184, hep-th/9307158.

    Article  ADS  MathSciNet  Google Scholar 

  99. I. Antoniadis, E. Gava, K. S. Narain, and T. R. Taylor, “N=2 type II heterotic duality and higher derivative F terms,” Nucl. Phys. B455 (1995) 109–130, hep-th/9507115.

    Article  ADS  MathSciNet  Google Scholar 

  100. G. Lopes Cardoso, B. de Wit, and T. Mohaupt, “Corrections to macroscopic supersymmetric black-hole entropy,” Phys. Lett. B451 (1999) 309–316, hep-th/9812082.

    ADS  Google Scholar 

  101. G. Lopes Cardoso, B. de Wit, and T. Mohaupt, “Deviations from the area law for supersymmetric black holes,” Fortsch. Phys. 48 (2000) 49–64, hep-th/9904005.

    Article  ADS  Google Scholar 

  102. G. Lopes Cardoso, B. de Wit, and T. Mohaupt, “Macroscopic entropy formulae and non-holomorphic corrections for supersymmetric black holes,” Nucl. Phys. B567 (2000) 87–110, hep-th/9906094.

    Article  Google Scholar 

  103. G. Lopes Cardoso, B. de Wit, and T. Mohaupt, “Area law corrections from state counting and supergravity,” Class. Quant. Grav. 17 (2000) 1007–1015, hep-th/9910179.

    Google Scholar 

  104. R. M. Wald, “Black hole entropy in the Noether charge,” Phys. Rev. D48 (1993) 3427–3431, gr-qc/9307038.

    ADS  MathSciNet  Google Scholar 

  105. T. Jacobson, G. Kang, and R. C. Myers, “On black hole entropy,” Phys. Rev. D49 (1994) 6587–6598, gr-qc/9312023.

    ADS  MathSciNet  Google Scholar 

  106. T. Jacobson, G. Kang, and R. C. Myers, “Increase of black hole entropy in higher curvature gravity,” Phys. Rev. D52 (1995) 3518–3528, gr-qc/9503020.

    ADS  MathSciNet  Google Scholar 

  107. P. Kraus and F. Larsen, “Microscopic black hole entropy in theories with higher derivatives,” JHEP 09 (2005) 034, hep-th/0506176.

    Article  ADS  MathSciNet  Google Scholar 

  108. A. Sen, “Black hole entropy function and the attractor mechanism in higher derivative gravity,” JHEP 09 (2005) 038, hep-th/0506177.

    Article  ADS  Google Scholar 

  109. C. Vafa, “Two dimensional Yang-Mills, black holes and topological strings,” hep-th/0406058.

    Google Scholar 

  110. M. Aganagic, H. Ooguri, N. Saulina, and C. Vafa, “Black holes, q-deformed 2d Yang-Mills, and non-perturbative topological strings,” hep-th/0411280.

    Google Scholar 

  111. D. J. Gross and I. Taylor, Washington, “Two-dimensional qcd is a string theory,” Nucl. Phys. B400 (1993) 181–210, hep-th/9301068.

    Article  ADS  MathSciNet  Google Scholar 

  112. R. Dijkgraaf, R. Gopakumar, H. Ooguri, and C. Vafa, “Baby universes in string theory,” hep-th/0504221.

    Google Scholar 

  113. D. Shih and X. Yin, “Exact black hole degeneracies and the topological string,” JHEP 04 (2006) 034, hep-th/0508174.

    Article  ADS  MathSciNet  Google Scholar 

  114. D. Gaiotto, A. Strominger, and X. Yin, “From ads(3)/cft(2) to black holes/topological strings,” hep-th/0602046.

    Google Scholar 

  115. F. Denef and G. W. Moore, “Split states, entropy enigmas, holes and halos,” hep-th/0702146.

    Google Scholar 

  116. C. Beasley et al., “Why ZBH=|Ztop|2,” hep-th/0608021.

    Google Scholar 

  117. J. de Boer, M. C. N. Cheng, R. Dijkgraaf, J. Manschot, and E. Verlinde, “A Farey tail for attractor black holes,” hep-th/0608059.

    Google Scholar 

  118. A. Dabholkar, “Exact counting of black hole microstates,” Phys. Rev. Lett. 94 (2005) 241301, hep-th/0409148.

    Article  ADS  MathSciNet  Google Scholar 

  119. A. Dabholkar and J. A. Harvey, “Nonrenormalization of the superstring tension,” Phys. Rev. Lett. 63 (1989) 478.

    Article  ADS  Google Scholar 

  120. A. Dabholkar, G. W. Gibbons, J. A. Harvey, and F. Ruiz Ruiz, “Superstrings and solitons,” Nucl. Phys. B340 (1990) 33–55.

    Article  ADS  Google Scholar 

  121. R. Dijkgraaf, J. M. Maldacena, G. W. Moore, and E. Verlinde, “A black hole Farey tail,” hep-th/0005003.

    Google Scholar 

  122. J. A. Harvey and G. W. Moore, “Fivebrane instantons and R2 couplings in N=4 string theory,” Phys. Rev. D57 (1998) 2323–2328, hep-th/9610237.

    MathSciNet  ADS  Google Scholar 

  123. A. Sen, “Extremal black holes and elementary string states,” Mod. Phys. Lett. A10 (1995) 2081–2094, hep-th/9504147.

    ADS  Google Scholar 

  124. A. Sen, “Black holes and elementary string states in N=2 supersymmetric string theories,” JHEP 02 (1998) 011, hep-th/9712150.

    Article  ADS  Google Scholar 

  125. A. Sen, “How does a fundamental string stretch its horizon?,” hep-th/0411255.

    Google Scholar 

  126. A. Dabholkar, R. Kallosh, and A. Maloney, “A stringy cloak for a classical singularity,” JHEP 12 (2004) 059, hep-th/0410076.

    Article  ADS  MathSciNet  Google Scholar 

  127. V. Hubeny, A. Maloney, and M. Rangamani, “String-corrected black holes,” JHEP 05 (2005) 035, hep-th/0411272.

    Article  ADS  MathSciNet  Google Scholar 

  128. A. Sen, “Black holes and the spectrum of half-bps states in n=4 supersymmetric string theory,” Adv. Theor. Math. Phys. 9 (2005) 527–558, hep-th/0504005.

    MATH  MathSciNet  Google Scholar 

  129. A. Sen, “Black holes, elementary strings and holomorphic anomaly,” JHEP 07 (2005) 063, hep-th/0502126.

    Article  ADS  Google Scholar 

  130. P. Kraus and F. Larsen, “Holographic gravitational anomalies,” JHEP 01 (2006) 022, hep-th/0508218.

    Article  ADS  MathSciNet  Google Scholar 

  131. P. Kraus and F. Larsen, “Partition functions and elliptic genera from supergravity,” JHEP 01 (2007) 002, hep-th/0607138.

    Article  ADS  MathSciNet  Google Scholar 

  132. Kraus, P.: Lectures on Black Holes and the $AdS_3/CFT_2$ Correspondence Lect. Notes Phys. 755 x–xx (2008).

    MathSciNet  Google Scholar 

  133. H. A. Kastrup and T. Thiemann, “Canonical quantization of spherically symmetric gravity in Ashtekar’s selfdual representation,” Nucl. Phys. B399 (1993) 211–258, gr-qc/9310012.

    ADS  MathSciNet  Google Scholar 

  134. K. V. Kuchar, “Geometrodynamics of Schwarzschild black holes,” Phys. Rev. D50 (1994) 3961–3981, gr-qc/9403003.

    ADS  MathSciNet  Google Scholar 

  135. M. Cavaglia, V. de Alfaro, and A. T. Filippov, “Hamiltonian formalism for black holes and quantization,” Int. J. Mod. Phys. D4 (1995) 661–672, gr-qc/9411070.

    ADS  Google Scholar 

  136. H. Hollmann, “Group theoretical quantization of Schwarzschild and Taub-NUT,” Phys. Lett. B388 (1996) 702–706, gr-qc/9609053.

    ADS  MathSciNet  Google Scholar 

  137. H. Hollmann, “A harmonic space approach to spherically symmetric quantum gravity,” gr-qc/9610042.

    Google Scholar 

  138. P. Breitenlohner, H. Hollmann, and D. Maison, “Quantization of the Reissner-Nordström black hole,” Phys. Lett. B432 (1998) 293–297, gr-qc/9804030.

    MathSciNet  ADS  Google Scholar 

  139. G. Mandal, “Fermions from half-bps supergravity,” JHEP 08 (2005) 052, hep-th/0502104.

    Article  ADS  MathSciNet  Google Scholar 

  140. L. Maoz and V. S. Rychkov, “Geometry quantization from supergravity: The case of ’bubbling ads’,” JHEP 08 (2005) 096, hep-th/0508059.

    Article  ADS  MathSciNet  Google Scholar 

  141. V. S. Rychkov, “D1-d5 black hole microstate counting from supergravity,” JHEP 01 (2006) 063, hep-th/0512053.

    Article  ADS  MathSciNet  Google Scholar 

  142. L. Grant, L. Maoz, J. Marsano, K. Papadodimas, and V. S. Rychkov, “Minisuperspace quantization of ’bubbling ads’ and free fermion droplets,” JHEP 08 (2005) 025, hep-th/0505079.

    Article  ADS  MathSciNet  Google Scholar 

  143. I. Biswas, D. Gaiotto, S. Lahiri, and S. Minwalla, “Supersymmetric states of n=4 yang-mills from giant gravitons,” hep-th/0606087.

    Google Scholar 

  144. G. Mandal and N. V. Suryanarayana, “Counting 1/8-bps dual-giants,” JHEP 03 (2007) 031, hep-th/0606088.

    Article  ADS  MathSciNet  Google Scholar 

  145. J. M. Maldacena, J. Michelson, and A. Strominger, “Anti-de Sitter fragmentation,” JHEP 02 (1999) 011, hep-th/9812073.

    Article  MathSciNet  ADS  Google Scholar 

  146. B. Pioline and J. Troost, “Schwinger pair production in ads(2),” JHEP 03 (2005) 043, hep-th/0501169.

    Article  ADS  MathSciNet  Google Scholar 

  147. P. Breitenlohner, G. W. Gibbons, and D. Maison, “Four-dimensional black holes from Kaluza-Klein theories,” Commun. Math. Phys. 120 (1988) 295.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  148. C. M. Hull and B. L. Julia, “Duality and moduli spaces for time-like reductions,” Nucl. Phys. B534 (1998) 250–260, hep-th/9803239.

    Article  MathSciNet  ADS  Google Scholar 

  149. S. Ferrara and S. Sabharwal, “Quaternionic manifolds for type II superstring vacua of Calabi-Yau spaces,” Nucl. Phys. B332 (1990) 317.

    Article  ADS  MathSciNet  Google Scholar 

  150. T. Damour, M. Henneaux, and H. Nicolai, “Cosmological billiards,” Class. Quant. Grav. 20 (2003) R145–R200, hep-th/0212256.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  151. B. Pioline and A. Waldron, “Quantum cosmology and conformal invariance,” Phys. Rev. Lett. 90 (2003) 031302, hep-th/0209044.

    Article  ADS  MathSciNet  Google Scholar 

  152. V. de Alfaro, S. Fubini, and G. Furlan, “Conformal invariance in quantum mechanics,” Nuovo Cim. A34 (1976) 569.

    Article  ADS  Google Scholar 

  153. W. Kinnersley, “Generation of stationary Einstein-Maxwell fields,” J. Math. Phys. 14 (1973), no. 5 651–653.

    Article  ADS  MathSciNet  Google Scholar 

  154. A. A. Kirillov, “Merits and demerits of the orbit method,” Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 4, 433–488.

    Article  MATH  MathSciNet  Google Scholar 

  155. S. Cecotti, S. Ferrara, and L. Girardello, “Geometry of type II superstrings and the moduli of superconformal field theories,” Int. J. Mod. Phys. A4 (1989) 2475.

    ADS  MathSciNet  Google Scholar 

  156. J. Bagger and E. Witten, “Matter couplings in N=2 supergravity,” Nucl. Phys. B222 (1983) 1.

    Article  ADS  MathSciNet  Google Scholar 

  157. M. Gutperle and M. Spalinski, “Supergravity instantons for N=2 hypermultiplets,” Nucl. Phys. B598 (2001) 509–529, hep-th/0010192.

    Article  ADS  MathSciNet  Google Scholar 

  158. K. Behrndt, I. Gaida, D. Lust, S. Mahapatra, and T. Mohaupt, “From type iia black holes to t-dual type iib d-instantons in n=2, d=4 supergravity,” Nucl. Phys. B508 (1997) 659–699, hep-th/9706096.

    Article  MathSciNet  ADS  Google Scholar 

  159. M. de Vroome and S. Vandoren, “Supergravity description of spacetime instantons,” hep-th/0607055.

    Google Scholar 

  160. A. Swann, “Hyper-Kähler and quaternionic Kähler geometry,” Math. Ann. 289 (1991), no. 3, 421–450.

    Article  MATH  MathSciNet  Google Scholar 

  161. S. M. Salamon, “Quaternionic Kähler manifolds,” Invent. Math. 67 (1982), no. 1, 143–171.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  162. M. Rocek, C. Vafa, and S. Vandoren, “Hypermultiplets and topological strings,” JHEP 02 (2006) 062, hep-th/0512206.

    Article  ADS  MathSciNet  Google Scholar 

  163. S. B. Giddings and A. Strominger, “Baby universes, third quantization and the cosmological constant,” Nucl. Phys. B321 (1989) 481.

    Article  ADS  MathSciNet  Google Scholar 

  164. E. Witten, “Constraints on supersymmetry breaking,” Nucl. Phys. B202 (1982) 253.

    Article  ADS  MathSciNet  Google Scholar 

  165. L. Alvarez-Gaume, “Supersymmetry and the atiyah-singer index theorem,” Commun. Math. Phys. 90 (1983) 161.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  166. D. Friedan and P. Windey, “Supersymmetric derivation of the atiyah-singer index and the chiral anomaly,” Nucl. Phys. B235 (1984) 395.

    Article  ADS  MathSciNet  Google Scholar 

  167. J. P. Gauntlett, “Low-energy dynamics of supersymmetric solitons,” Nucl. Phys. B400 (1993) 103–125, hep-th/9205008.

    Article  ADS  MathSciNet  Google Scholar 

  168. J. P. Gauntlett, “Low-energy dynamics of n=2 supersymmetric monopoles,” Nucl. Phys. B411 (1994) 443–460, hep-th/9305068.

    Article  ADS  MathSciNet  Google Scholar 

  169. S. M. Salamon, “Differential geometry of quaternionic manifolds,” Annales Scientifiques de l’École Normale Supérieure Sr. 4, 19 (1986) 31–55.

    MathSciNet  Google Scholar 

  170. R. J. Baston, “Quaternionic complexes,” J. Geom. Phys. 8 (1992), no. 1-4, 29–52.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  171. M. F. Atiyah, N. J. Hitchin, and I. M. Singer, “Self-duality in four-dimensional Riemannian geometry,” Proc. Roy. Soc. London Ser. A 362 (1978), no. 1711, 425–461.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  172. D. Anselmi and P. Fre, “Topological sigma models in four-dimensions and triholomorphic maps,” Nucl. Phys. B416 (1994) 255–300, hep-th/9306080.

    Article  ADS  MathSciNet  Google Scholar 

  173. S. Cecotti, “Homogeneous kahler manifolds and t algebras in n=2 supergravity and superstrings,” Commun. Math. Phys. 124 (1989) 23–55.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  174. M. Gunaydin, K. Koepsell, and H. Nicolai, “Conformal and quasiconformal realizations of exceptional Lie groups,” Commun. Math. Phys. 221 (2001) 57–76, hep-th/0008063.

    Article  ADS  MathSciNet  Google Scholar 

  175. B. Pioline and A. Waldron, “Automorphic forms: A physicist’s survey,” hep-th/0312068.

    Google Scholar 

  176. B. H. Gross and N. R. Wallach, “On quaternionic discrete series representations, and their continuations,” J. Reine Angew. Math. 481 (1996) 73–123.

    MATH  MathSciNet  Google Scholar 

  177. M. G. Eastwood and M. L. Ginsberg, “Duality in twistor theory,” Duke Math. J. 48 (1981), no. 1, 177–196.

    Article  MATH  MathSciNet  Google Scholar 

  178. L. C. Biedenharn, R. Y. Cusson, M. Y. Han, and O. L. Weaver, “Hadronic Regge sequences as primitive realizations of sl(3,r) symmetry,” Phys. Lett. B42 (1972) 257–260.

    ADS  Google Scholar 

  179. B. Pioline, H. Nicolai, J. Plefka, and A. Waldron, “R4 couplings, the fundamental membrane and exceptional theta correspondences,” JHEP 03 (2001) 036, hep-th/0102123.

    Article  ADS  MathSciNet  Google Scholar 

  180. B. Pioline and A. Waldron, “The automorphic membrane,” JHEP 06 (2004) 009, hep-th/0404018.

    Article  ADS  MathSciNet  Google Scholar 

  181. M. Gunaydin, K. Koepsell, and H. Nicolai, “The minimal unitary representation of E8(8),” Adv. Theor. Math. Phys. 5 (2002) 923–946, hep-th/0109005.

    MathSciNet  Google Scholar 

  182. D. Kazhdan and G. Savin, “The smallest representation of simply laced groups,” in Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989), vol. 2 of Israel Math. Conf. Proc., pp. 209–223. Weizmann, Jerusalem, 1990.

    Google Scholar 

  183. D. Kazhdan, B. Pioline, and A. Waldron, “Minimal representations, spherical vectors, and exceptional theta series. I,” Commun. Math. Phys. 226 (2002) 1–40, hep-th/0107222.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  184. M. Gunaydin and O. Pavlyk, “Minimal unitary realizations of exceptional U-duality groups and their subgroups as quasiconformal groups,” JHEP 01 (2005) 019, hep-th/0409272.

    Article  ADS  MathSciNet  Google Scholar 

  185. M. Gunaydin and O. Pavlyk, “A unified approach to the minimal unitary realizations of noncompact groups and supergroups,” hep-th/0604077.

    Google Scholar 

  186. S. Ferrara and M. Gunaydin, “Orbits of exceptional groups, duality and BPS states in string theory,” Int. J. Mod. Phys. A13 (1998) 2075–2088, hep-th/9708025.

    ADS  MathSciNet  Google Scholar 

  187. M. Gunaydin, “Unitary realizations of U-duality groups as conformal and quasiconformal groups and extremal black holes of supergravity theories,” AIP Conf. Proc. 767 (2005) 268–287, hep-th/0502235.

    Article  ADS  MathSciNet  Google Scholar 

  188. N. R. Wallach, “Generalized Whittaker vectors for holomorphic and quaternionic representations,” Comment. Math. Helv. 78 (2003), no. 2, 266–307.

    MATH  MathSciNet  Google Scholar 

  189. D. Kazhdan and A. Polishchuk, “Minimal representations: spherical vectors and automorphic functionals,” in Algebraic groups and arithmetic, pp. 127–198. Tata Inst. Fund. Res., Mumbai, 2004.

    Google Scholar 

  190. A. Neitzke, B. Pioline, and S. Vandoren. To appear.

    Google Scholar 

  191. D. Shih, A. Strominger, and X. Yin, “Counting dyons in N=8 string theory,” hep-th/0506151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pioline, B. (2008). Lectures on Black Holes, Topological Strings, and Quantum Attractors (2.0). In: Supersymmetric Mechanics - Vol. 3. Lecture Notes in Physics, vol 755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79523-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79523-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79522-3

  • Online ISBN: 978-3-540-79523-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics