Skip to main content

Extremal Black Hole and Flux Vacua Attractors

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 755))

Abstract

These lectures provide a pedagogical, introductory review of the so-called Attractor Mechanism (AM) at work in two different 4-dimensional frameworks: extremal black holes in N=2 supergravity and N=1 flux compactifications. In the first case, AM determines the stabilization of scalars at the black hole event horizon purely in terms of the electric and magnetic charges, whereas in the second context, the AM is responsible for the stabilization of the universal axion-dilaton and of the (complex structure) moduli purely in terms of the RR and NSNS fluxes. Two equivalent approaches to AM, namely the so-called “criticality conditions” and “New Attractor” ones, are analyzed in detail in both frameworks, whose analogies and differences are discussed. Also, a stringy analysis of both frameworks (relying on Hodge-decomposition techniques) is performed, respectively, considering Type IIB compactified on CY3 and its orientifolded version, associated with CY3× T2Z2. Finally, recent results on the U-duality orbits and moduli spaces of non-BPS extremal black hole attractors in 3⩽N⩽ 8, d=4 supergravities are reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Ferrara, R. Kallosh and A. Strominger, N=2 Extremal Black Holes, Phys. Rev. D52, 5412 (1995), hep-th/9508072.

    ADS  MathSciNet  Google Scholar 

  2. A. Strominger, Macroscopic Entropy of N=2 Extremal Black Holes, Phys. Lett. B383, 39 (1996), hep-th/9602111.

    ADS  MathSciNet  Google Scholar 

  3. S. Ferrara and R. Kallosh, Supersymmetry and Attractors, Phys. Rev. D54, 1514 (1996), hep-th/9602136.

    ADS  MathSciNet  Google Scholar 

  4. S. Ferrara and R. Kallosh, Universality of Supersymmetric Attractors, Phys. Rev. D54, 1525 (1996), hep-th/9603090.

    ADS  MathSciNet  Google Scholar 

  5. S. Ferrara, G. W. Gibbons and R. Kallosh, Black Holes and Critical Points in Moduli Space, Nucl. Phys. B500, 75 (1997), hep-th/9702103.

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Sen, Black Hole Entropy Function and the Attractor Mechanism in Higher Derivative Gravity, JHEP 09, 038 (2005), hep-th/0506177.

    Article  ADS  Google Scholar 

  7. K. Goldstein, N. Iizuka, R. P. Jena and S. P. Trivedi, Non-Supersymmetric Attractors, Phys. Rev. D72, 124021 (2005), hep-th/0507096.

    ADS  MathSciNet  Google Scholar 

  8. A. Sen, Entropy Function for Heterotic Black Holes, JHEP 03, 008 (2006), hep-th/0508042.

    Article  ADS  Google Scholar 

  9. R. Kallosh, New Attractors, JHEP 0512, 022 (2005), hep-th/0510024.

    Article  ADS  MathSciNet  Google Scholar 

  10. P. K. Tripathy and S. P. Trivedi, Non-Supersymmetric Attractors in String Theory, JHEP 0603, 022 (2006), hep-th/0511117.

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Giryavets, New Attractors and Area Codes, JHEP 0603, 020 (2006), hep-th/0511215.

    Article  ADS  MathSciNet  Google Scholar 

  12. K. Goldstein, R. P. Jena, G. Mandal and S. P. Trivedi, A C-Function for Non-Supersymmetric Attractors, JHEP 0602, 053 (2006), hep-th/0512138.

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Alishahiha and H. Ebrahim, Non-supersymmetric attractors and entropy function, JHEP 0603, 003 (2006), hep-th/0601016.

    Article  ADS  MathSciNet  Google Scholar 

  14. R. Kallosh, N. Sivanandam and M. Soroush, The Non-BPS Black Hole Attractor Equation, JHEP 0603, 060 (2006), hep-th/0602005.

    Article  ADS  MathSciNet  Google Scholar 

  15. B. Chandrasekhar, S. Parvizi, A. Tavanfar and H. Yavartanoo, Non-supersymmetric attractors in R2 gravities, JHEP 0608, 004 (2006), hep-th/0602022.

    Article  ADS  MathSciNet  Google Scholar 

  16. J. P. Hsu, A. Maloney and A. Tomasiello, Black Hole Attractors and Pure Spinors, JHEP 0609, 048 (2006), hep-th/0602142.

    Article  ADS  MathSciNet  Google Scholar 

  17. S. Bellucci, S. Ferrara and A. Marrani, On some properties of the Attractor Equations, Phys. Lett. B635, 172 (2006), hep-th/0602161.

    ADS  MathSciNet  Google Scholar 

  18. Bellucci, S., Ferrara, S., Marrani, A.: Supersymmetric Mechanics–Vol.2, Lect. Notes Phys. 701, DOI: 10.1007/b11749356 (2006).

    Google Scholar 

  19. S. Ferrara and R. Kallosh, On N=8 attractors, Phys. Rev. D 73, 125005 (2006), hep-th/0603247.

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Alishahiha and H. Ebrahim, New attractor, Entropy Function and Black Hole Partition Function, JHEP 0611, 017 (2006), hep-th/0605279.

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Bellucci, S. Ferrara, M. Günaydin and A. Marrani, Charge Orbits of Symmetric Special Geometries and Attractors, Int. J. Mod. Phys. A21, 5043 (2006), hep-th/0606209.

    ADS  Google Scholar 

  22. D. Astefanesei, K. Goldstein, R. P. Jena, A. Sen and S. P. Trivedi, Rotating Attractors, JHEP 0610, 058 (2006), hep-th/0606244.

    Article  ADS  MathSciNet  Google Scholar 

  23. R. Kallosh, N. Sivanandam and M. Soroush, Exact Attractive non-BPS STU Black Holes, Phys. Rev. D74, 065008 (2006), hep-th/0606263.

    ADS  MathSciNet  Google Scholar 

  24. P. Kaura and A. Misra, On the Existence of Non-Supersymmetric Black Hole Attractors for Two-Parameter Calabi-Yau’s and Attractor Equations, Fortsch. Phys. 54, 1109 (2006), hep-th/0607132.

    Article  MATH  MathSciNet  Google Scholar 

  25. G. L. Cardoso, V. Grass, D. Lüst and J. Perz, Extremal non-BPS Black Holes and Entropy Extremization, JHEP 0609, 078 (2006), hep-th/0607202.

    Article  Google Scholar 

  26. S. Bellucci, S. Ferrara, A. Marrani and A. Yeranyan, Mirror Fermat Calabi-Yau Threefolds and Landau-Ginzburg Black Hole Attractors, Riv. Nuovo Cim. 029, 1 (2006), hep-th/0608091.

    ADS  Google Scholar 

  27. G.L. Cardoso, B. de Wit and S. Mahapatra, Black Hole Entropy Functions and Attractor Equations, JHEP 0703, 085 (2007) hep-th/0612225.

    Article  Google Scholar 

  28. R. D’Auria, S. Ferrara and M. Trigiante, Critical Points of the Black-Hole Potential for Homogeneous Special Geometries, JHEP 0703, 097 (2007), hep-th/0701090.

    Article  MathSciNet  Google Scholar 

  29. S. Bellucci, S. Ferrara and A. Marrani, Attractor Horizon Geometries of Extremal Black Holes, Contribution to the Proceedings of the XVII SIGRAV Conference,4–7 September 2006, Turin, Italy, hep-th/0702019.

    Google Scholar 

  30. A. Ceresole and G. Dall’Agata, Flow Equations for Non-BPS Extremal Black Holes, JHEP 0703, 110 (2007), hep-th/0702088.

    Article  ADS  MathSciNet  Google Scholar 

  31. L. Andrianopoli, R. D’Auria, S. Ferrara and M. Trigiante, Black Hole Attractors in N=1 Supergravity, JHEP 0707, 019 (2007), hep-th/0703178.

    Article  ADS  MathSciNet  Google Scholar 

  32. K. Saraikin and C. Vafa, Non-supersymmetric Black Holes and Topological Strings, hep-th/0703214.

    Google Scholar 

  33. S. Ferrara and A. Marrani, N=8 non-BPS Attractors, Fixed Scalars and Magic Supergravities, Nucl. Phys. B 2007, in press, ArXiV:0705.3866.

    Google Scholar 

  34. S. Nampuri, P. K. Tripathy and S. P. Trivedi, On The Stability of Non-Supersymmetric Attractors in String Theory, arXiv:0705.4554.

    Google Scholar 

  35. L. Andrianopoli, R. D’Auria, E. Orazi, M. Trigiante, First Order Description of Black Holes in Moduli Space, arXiv:0706.0712.

    Google Scholar 

  36. S. Ferrara and A. Marrani, On the Moduli Space of non-BPS Attractors for N=2 Symmetric Manifolds, Phys. Lett. B652, 111 (2007), ArXiV:0706.1667.

    ADS  MathSciNet  Google Scholar 

  37. D.Astefanesei and H. Yavartanoo, Stationary Black Holes and Attractor Mechanism, arXiv:0706.1847.

    Google Scholar 

  38. G. L. Cardoso, A. Ceresole, G. Dall’Agata, J. M. Oberreuter, J. Perz, First-Order Flow Equations for Extremal Black Holes in Very Special Geometry, ArXiV:0706.3373.

    Google Scholar 

  39. A. Misra and P. Shukla, ‘Area Codes’, Large Volume (non-)Perturbative Alpha-Prime and Instanton: Corrected Non-supersymmetric (A)dS Minimum, the ‘Inverse Problem’ and ‘Fake Superpotentials’ for Multiple-Singular-Loci-Two-Parameter Calabi-Yau’s, ArXiV:0707.0105.

    Google Scholar 

  40. A. Ceresole, S. Ferrara and A. Marrani, 4d/5d Correspondence for the Black Hole Potential and its Critical Points, Class. Quant. Grav. 2007, in press, ArXiV:0707.0964.

    Google Scholar 

  41. M. M. Anber and D. Kastor, The Attractor Mechanism in Gauss-Bonnet Gravity, arXiv:0707.1464.

    Google Scholar 

  42. Y. S. Myung, Y.-W. Kim and Y.-J. Park, New Attractor Mechanism for Spherically Symmetric Extremal Black Holes, arXiv:0707.1933.

    Google Scholar 

  43. S. Bellucci, A. Marrani, E. Orazi and A. Shcherbakov, Attractors with Vanishing Central Charge, Phys. Lett. B 2007, in press, ArXiV:0707.2730.

    Google Scholar 

  44. K. Hotta and T. Kubota, Exact Solutions and the Attractor Mechanism in Non-BPS Black Holes, arXiv:0707.4554.

    Google Scholar 

  45. X. Gao, Non-supersymmetric Attractors in Born-Infeld Black Holes with a Cosmological Constant, arXiv:0708.1226.

    Google Scholar 

  46. S. Ferrara and A. Marrani, Black Hole Attractors in Extended Supergravity, to appear in the Proceedings of 13th International Symposium on Particles, Strings and Cosmology (PASCOS 07), London, England, 2–7 Jul 2007, arXiv:0708.1268.

    Google Scholar 

  47. A. Sen, Black Hole Entropy Function, Attractors and Precision Counting of Microstates, arXiv:0708.1270.

    Google Scholar 

  48. A. Belhaj, L.B. Drissi, E.H. Saidi and A. Segui, N=2 Supersymmetric Black Attractors in Six and Seven Dimensions, arXiv:0709.0398.

    Google Scholar 

  49. L. Andrianopoli, S. Ferrara, A. Marrani and M. Trigiante, Non-BPS Attractors in 5 d and 6 d Extended Supergravity, arXiv:0709.3488.

    Google Scholar 

  50. D. Gaiotto, W. Li and M. Padi, Non-Supersymmetric Attractor Flow in Symmetric Spaces, arXiv:0710.1638.

    Google Scholar 

  51. S. Bellucci, S. Ferrara, A. Marrani and A. Shcherbakov, Splitting of Attractors in 1-Modulus Quantum Corrected Special Geometry, arXiv:0710.3559.

    Google Scholar 

  52. E. G. Gimon, F. Larsen and J. Simon, Black Holes in Supergravity: the Non-BPS Branch, arXiv:0710.4967.

    Google Scholar 

  53. D. Astefanesei, H. Nastase, H. Yavartanoo and S. Yun, Moduli Flow and Non-supersymmetric AdS Attractors, arXiv:0711.0036.

    Google Scholar 

  54. H. Ooguri, A. Strominger and C. Vafa, Black Hole Attractors and the Topological String, Phys. Rev. D70, 106007 (2004), hep-th/0405146.

    ADS  MathSciNet  Google Scholar 

  55. A. Sen, Black Holes, Elementary Strings and Holomorphic Anomaly, JHEP 0507, 063 (2005), hep-th/0502126.

    Article  ADS  Google Scholar 

  56. E. Verlinde, Attractors and the Holomorphic Anomaly, hep-th/0412139.

    Google Scholar 

  57. H. Ooguri, C. Vafa and E. Verlinde, Hartle-Hawking Wave-Function for Flux Compactifications: the Entropic Principle, Lett. Math. Phys. 74, 311 (2005), hep-th/0502211.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  58. R. Dijkgraaf, R. Gopakumar, H. Ooguri and C. Vafa, Baby Universes in String Theory, Phys. Rev. D73, 066002 (2006), hep-th/0504221.

    ADS  MathSciNet  Google Scholar 

  59. M. Aganagic, A. Neitzke and C. Vafa, BPS Microstates and the Open Topological String Wave Function, hep-th/0504054.

    Google Scholar 

  60. V. Pestun, Black Hole Entropy and Topological Strings on Generalized CY Manifolds, JHEP 0609, 034 (2006), hep-th/0512189.

    Article  ADS  MathSciNet  Google Scholar 

  61. S. Gukov, K. Saraikin and C. Vafa, The Entropic Principle and Asymptotic Freedom, Phys. Rev. D73, 066010 (2006), hep-th/0509109.

    ADS  MathSciNet  Google Scholar 

  62. B. Fiol, On the Critical Points of the Entropic Principle, JHEP 0603, 054 (2006), hep-th/0602103.

    Article  ADS  MathSciNet  Google Scholar 

  63. A. Ceresole, R. D’Auria, S. Ferrara and A. Van Proeyen, Duality Transformations in Supersymmetric Yang-Mills Theories Coupled to Supergravity, Nucl. Phys. B444, 92 (1995), hep-th/9502072.

    Article  ADS  Google Scholar 

  64. A. Ceresole, R. D’Auria and S. Ferrara, The Symplectic Structure of N=2 Supergravity and Its Central Extension, Talk given at ICTP Trieste Conference on Physical and Mathematical Implications of Mirror Symmetry in String Theory, Trieste, Italy, 5–9 June 1995, Nucl. Phys. Proc. Suppl. 46 (1996), hep-th/9509160.

    Google Scholar 

  65. K. Behrndt, G. Lopes Cardoso, B. de Wit, R. Kallosh, D. Lust and T. Mohaupt, Classical and quantum N=2 Supersymmetric Black Holes, Nucl. Phys. B 488, 236 (1997), hep-th/9610105.

    Google Scholar 

  66. G.W. Moore, Attractors and Arithmetic, hep-th/9807056.

    Google Scholar 

  67. G.W. Moore, Arithmetic and Attractors, hep-th/9807087.

    Google Scholar 

  68. G.W. Moore, Les Houches Lectures on Strings and Arithmetic, hep-th/0401049.

    Google Scholar 

  69. J. D. Bekenstein, Phys. Rev. D7, 2333 (1973).

    ADS  MathSciNet  Google Scholar 

  70. S. W. Hawking, Phys. Rev. Lett. 26, 1344 (1971).

    Google Scholar 

  71. S. W. Hawking, in: Black Holes (Les Houches 1972) C. DeWitt, B. S. DeWitt eds. (Gordon and Breach, New York, 1973).

    Google Scholar 

  72. S. W. Hawking, Nature 248, 30 (1974).

    Article  ADS  Google Scholar 

  73. S. W. Hawking, Comm. Math. Phys. 43, 199 (1975).

    Google Scholar 

  74. G. W. Gibbons and C. M. Hull, A Bogomol’ny Bound for General Relativity and Solitons in N=2 Supergravity, Phys. Lett. B109, 190 (1982).

    ADS  MathSciNet  Google Scholar 

  75. R. Arnowitt, S. Deser and C. W. Misner, The Dynamics of General Relativity, in : “Gravitation: an Introduction to Current Research”, L. Witten ed. (Wiley, New York, 1962).

    Google Scholar 

  76. S. Ferrara and M. Günaydin, Orbits of Exceptional Groups, Duality and BPS States in String Theory, Int. J. Mod. Phys. A13, 2075 (1998), hep-th/9708025.

    ADS  Google Scholar 

  77. S. Ferrara and M. Günaydin, Orbits and Attractors for N=2 Maxwell-Einstein Supergravity Theories in Five Dimensions, Nucl. Phys. B759, 1 (2006), hep-th/0606108.

    Article  ADS  Google Scholar 

  78. S. Ferrara and J. M. Maldacena, Branes, Central Charges and U-Duality Invariant BPS Conditions, Class. Quant. Grav. 15, 749 (1998), hep-th/9706097.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  79. Larsen, F.: The Attractor Mechanism in Five Dimensions, Lect. Notes Phys. 755 x–xx (2008)

    Google Scholar 

  80. Andrianopoli, L., D’Auria, R., Ferrara, S., Trigiante, M.: Extremal Black Holes in Supergravity. Lect. Notes Phys. 737, 661–727 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  81. M. Grana, R. Minasian, M. Petrini and A. Tomasiello, Supersymmetric Backgrounds from Generalized Calabi-Yau Manifolds, JHEP 0408, 046 (2004), hep-th/0406137.

    Article  ADS  MathSciNet  Google Scholar 

  82. M. Grana, Flux Compactifications in String Theory: A Comprehensive Review, Phys. Rept. 423, 91, (2006), hep-th/0509003

    Article  ADS  MathSciNet  Google Scholar 

  83. M. Grana, Flux Compactifications and Generalized Geometries, Class. Quant. Grav. 23, S883 (2006).

    Article  MathSciNet  Google Scholar 

  84. J. Louis, Compactifications on Generalized Geometries, Fortsch. Phys. 54, 146 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  85. M. R. Douglas and S. Kachru, Flux Compactification, Rev. Mod. Phys. 79, 733 (2007), hep-th/0610102.

    Article  ADS  MathSciNet  Google Scholar 

  86. R. Blumenhagen, B. Kors, D. Lust and S. Stieberger, Four-Dimensional String Compactifications with D-Branes, Orientifolds and Fluxes, Phys. Rept. 445, 1 (2007), hep-th/0610327.

    Article  ADS  MathSciNet  Google Scholar 

  87. S. Kachru, R. Kallosh, A. Linde and S. P. Trivedi, De Sitter Vacua in String Theory, Phys. Rev. D68, 046005 (2003), hep-th/0301240.

    ADS  MathSciNet  Google Scholar 

  88. J. Bagger and E. Witten, Quantization of Newton’s Constant in Certain Supergravity Theories, Phys. Lett. B115, 202 (1982).

    ADS  MathSciNet  Google Scholar 

  89. E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills Theories with Local Supersymmetry: Lagrangian, Transformation Laws and SuperHiggs Effect, Nucl. Phys. B212, 413 (1983).

    Article  ADS  Google Scholar 

  90. S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau Four-Folds, Nucl. Phys. B584, 69 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  91. S. Gukov, C. Vafa and E. Witten, CFT’s From Calabi-yau Four-Folds, Nucl. Phys. (Erraturn) B608, 477 (2001), hep-th/9906070.

    Article  ADS  MathSciNet  Google Scholar 

  92. F. Denef and M. R. Douglas, Distributions of Flux Vacua, JHEP 0405, 072 (2004), hep-th/0404116.

    Article  ADS  MathSciNet  Google Scholar 

  93. M. Soroush, Constraints on Meta-Stable de Sitter Flux Vacua, hep-th/0702204.

    Google Scholar 

  94. B. de Wit and A. Van Proeyen, Potentials and Symmetries of General Gauged N=2 Supergravity - Yang-Mills Models, Nucl. Phys. B245, 89 (1984).

    Article  ADS  Google Scholar 

  95. E. Cremmer, C. Kounnas, A. Van Proeyen, J.P. Derendinger, S. Ferrara, B. de Wit and L. Girardello, Vector Multiplets Coupled To N=2 Supergravity: Superhiggs Effect, Flat Potentials And Geometric Structure, Nucl. Phys. B250, 385 (1985).

    Article  ADS  Google Scholar 

  96. E. Cremmer and A. Van Proeyen, Classification of Kähler Manifolds in N=2 Vector Multiplet Supergravity Couplings, Class. Quant. Grav. 2, 445 (1985).

    Article  MATH  ADS  Google Scholar 

  97. B. de Wit, P. G. Lauwers and A. Van Proeyen, Lagrangians of N=2 Supergravity – Matter Systems, Nucl. Phys. B255, 569 (1985).

    ADS  Google Scholar 

  98. A. Strominger, Special Geometry, Commun. Math. Phys. 133, 163 (1990).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  99. L. Castellani, R. D’Auria and S. Ferrara, Special Geometry without Special Coordinates, Class. Quant. Grav. 7, 1767 (1990).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  100. L. Castellani, R. D’Auria and S. Ferrara, Special Kähler Geometry: an Intrinsic Formulation from N=2 Space-Time Supersymmetry, Phys. Lett. B241, 57 (1990).

    ADS  MathSciNet  Google Scholar 

  101. R. D’Auria, S. Ferrara and P. Fré, Special and Quaternionic Isometries: General Couplings in N=2 Supergravity and the Scalar Potential, Nucl. Phys. B359, 705 (1991).

    Article  ADS  Google Scholar 

  102. L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Frè and T. Magri, N=2 Supergravity and N=2 Super Yang-Mills Theory on General Scalar Manifolds : Symplectic Covariance, Gaugings and the Momentum Map, J. Geom. Phys. 23, 111 (1997), hep-th/9605032

    Article  MATH  ADS  MathSciNet  Google Scholar 

  103. L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara and P. Fré, General Matter Coupled N=2 Supergravity, Nucl. Phys. B476, 397 (1996), hep-th/9603004.

    Article  ADS  Google Scholar 

  104. B. de Wit, F. Vanderseypen and A. Van Proeyen, Symmetry Structures of Special Geometries, Nucl. Phys. B400, 463 (1993), hep-th/9210068.

    Article  ADS  Google Scholar 

  105. P. Breitenlohner, D. Maison and G. W. Gibbons, Four-Dimensional Black Holes from Kaluza-Klein Theories, Commun. Math. Phys. 120, 295 (1988).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  106. B. Craps, F. Roose, W. Troost and A. Van Proeyen, The Definitions of Special Geometry, hep-th/9606073.

    Google Scholar 

  107. B. Craps, F. Roose, W. Troost and A. Van Proeyen, What is Special Kähler Geometry?, Nucl. Phys. B503, 565 (1997), hep-th/9703082.

    Article  ADS  Google Scholar 

  108. T. Levi-Civita, R.C. Acad. Lincei 26, 519 (1917).

    Google Scholar 

  109. B. Bertotti, Uniform Electromagnetic Field in the Theory of General Relativity, Phys. Rev. 116, 1331 (1959).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  110. I. Robinson, Bull. Acad. Polon. 7, 351 (1959).

    MATH  Google Scholar 

  111. D. Dai-Wai Bao, Shiing-Shen Chern and Z. Shen, “An Introduction to Riemann-Finsler Geometry” (Springer-Verlag, Berlin-Heidelberg, 2000).

    Google Scholar 

  112. B. Chow, P. Lu and L. Ni, “Hamilton’s Ricci Flow” (American Mathematical Society, 2006).

    Google Scholar 

  113. S. Ferrara and L. Maiani, An Introduction to Supersymmetry Breaking in Extended Supergravity, based on lectures given at SILARG V, 5th Latin American Symp. on Relativity and Gravitation, Bariloche, Argentina, January 1985, CERN-TH-4232/85.

    Google Scholar 

  114. S. Cecotti, L. Girardello and M. Porrati, Constraints on Partial SuperHiggs, Nucl. Phys. B268, 295 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  115. R. D’Auria and S. Ferrara, On Fermion Masses, Gradient Flows and Potential in Supersymmetric Theories, JHEP 0105, 034 (2001), hep-th/0103153.

    Article  MathSciNet  Google Scholar 

  116. K. Behrndt, R. Kallosh, J. Rahmfeld, M. Shmakova and W. K. Wong, STU Black Holes and String Triality, Phys. Rev. D54, 6293 (1996), hep-th/9608059.

    ADS  MathSciNet  Google Scholar 

  117. M. J. Duff, J. T. Liu and J. Rahmfeld, Four-Dimensional String/String/String Triality, Nucl. Phys. B459, 125 (1996), hep-th/9508094.

    Article  ADS  MathSciNet  Google Scholar 

  118. S. Cecotti, S. Ferrara and L. Girardello, Geometry of Type II Superstrings and the Moduli of Superconformal Field Theories, Int. J. Mod. Phys. A4, 2475 (1989).

    ADS  MathSciNet  Google Scholar 

  119. S. Ferrara, M. Bodner and A. C. Cadavid, Calabi-Yau Supermoduli Space, Field Strength Duality and Mirror Manifolds, Phys. Lett. B247, 25 (1990).

    ADS  MathSciNet  Google Scholar 

  120. S. Ferrara and A. Strominger, N=2 Space-Time Supersymmetry and Calabi Yau Moduli Space, in Proceedings of College Station Workshop “Strings ’89”, p. 245, eds. Arnowitt et al., World Scientific, 1989.

    Google Scholar 

  121. P. Candelas and X. de la Ossa, Moduli Space of Calabi-Yau Manifolds, Nucl. Phys. B355, 455 (1991).

    Article  ADS  Google Scholar 

  122. S. B. Giddings, S. Kachru and J. Polchinski, Hierarchies from Fluxes in String Compactifications, Phys. Rev. D66, 106006 (2002), hep-th/0105097.

    ADS  MathSciNet  Google Scholar 

  123. G. Dall’Agata, Non-Kähler Attracting Manifolds, JHEP 0604, 001 (2006), hep-th/0602045.

    Article  ADS  MathSciNet  Google Scholar 

  124. C. M. Hull and P. K. Townsend, Unity of Superstring Dualities, Nucl. Phys. B438, 109 (1995), hep-th/9410167.

    Article  ADS  MathSciNet  Google Scholar 

  125. S. Ferrara, E. G. Gimon and R. Kallosh, Magic Supergravities, N=8 and Black Hole Composites, Phys. Rev. D74, 125018 (2006), hep-th/0606211.

    ADS  MathSciNet  Google Scholar 

  126. M. J. Duff, R. R. Khuri and J. X. Lu, String Solitons, Phys. Rept. 259, 213 (1995), hep-th/9412184.

    Article  ADS  MathSciNet  Google Scholar 

  127. M. Cvetic and A. A. Tseytlin, Solitonic Strings and BPS Saturated Dyonic Black Holes, Phys. Rev. D53, 5619 (1996).

    ADS  MathSciNet  Google Scholar 

  128. M. Cvetic and A. A. Tseytlin, Solitonic Strings and BPS Saturated Dyonic Black Holes, Phys. Rev. (Erratum) D55, 3907 (1997)], hep-th/9512031.

    ADS  MathSciNet  Google Scholar 

  129. M. Cvetic and D. Youm, All the Static Spherically Symmetric Black Holes of Heterotic String on a Six Torus, Nucl. Phys. B472, 249 (1996), hep-th/9512127.

    Article  ADS  MathSciNet  Google Scholar 

  130. M. Cvetic and C. M. Hull, Black Holes and U-duality, Nucl. Phys. B480, 296 (1996), hep-th/9606193.

    Article  ADS  MathSciNet  Google Scholar 

  131. L. Andrianopoli, R. D’Auria and S. Ferrara, U Invariants, Black Hole Entropy and Fixed Scalars, Phys. Lett. B403, 12 (1997), hep-th/9703156.

    ADS  MathSciNet  Google Scholar 

  132. R. R. Khuri and T. Ortin, A Non-Supersymmetric Dyonic Extreme Reissner-Nordstrom Black Hole, Phys. Lett. B373, 56 (1996), hep-th/9512178.

    ADS  MathSciNet  Google Scholar 

  133. T. Ortin, Extremality Versus Supersymmetry in Stringy Black Holes, Phys. Lett. B422, 93 (1998), hep-th/9612142.

    MathSciNet  ADS  Google Scholar 

  134. T. Ortin, Non-supersymmetric (but) Extreme Black Holes, Scalar Hair and Other Open Problems, arXiv:hep-th/9705095.

    Google Scholar 

  135. R. Kallosh and A. Linde, Strings, Black Holes and Quantum Information, Phys. Rev. D73, 104033 (2006), hep-th/0602061.

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bellucci, S., Ferrara, S., Kallosh, R., Marrani, A. (2008). Extremal Black Hole and Flux Vacua Attractors. In: Supersymmetric Mechanics - Vol. 3. Lecture Notes in Physics, vol 755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79523-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79523-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79522-3

  • Online ISBN: 978-3-540-79523-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics