Medical Imaging and Informatics

Volume 4987 of the series Lecture Notes in Computer Science pp 179-188

Prototype System for Semantic Retrieval of Neurological PET Images

  • Stephen BattyAffiliated withThe Burroughs, Hendon, Middlsex University
  • , John ClarkAffiliated withWBIC, Addenbrookes Hospital, Cambridge University
  • , Tim FryerAffiliated withWBIC, Addenbrookes Hospital, Cambridge University
  • , Xiaohong GaoAffiliated withThe Burroughs, Hendon, Middlsex University

* Final gross prices may vary according to local VAT.

Get Access


Positron Emission Tomography (PET) is used within neurology to study the underlying biochemical basis of cognitive functioning. Due to the inherent lack of anatomical information its study in conjunction with image retrieval is limited. Content based image retrieval (CBIR) relies on visual features to quantify and classify images with a degree of domain specific saliency. Numerous CBIR systems have been developed semantic retrieval, has however not been performed. This paper gives a detailed account of the framework of visual features and semantic information utilized within a prototype image retrieval system, for PET neurological data. Images from patients diagnosed with different and known forms of Dementia are studied and compared to controls. Image characteristics with medical saliency are isolated in a top down manner, from the needs of the clinician - to the explicit visual content. These features are represented via Gabor wavelets and mean activity levels of specific anatomical regions. Preliminary results demonstrate that these representations are effective in reflecting image characteristics and subject diagnosis; consequently they are efficient indices within a semantic retrieval system.


PET neurological content based image retrieval dementia semantic retrieval