Skip to main content

Study of the High-Temperature Decomposition of AP and PMMA by the Linear Pyrolysis Method

  • Chapter
Book cover Fast Reactions in Energetic Materials
  • 1627 Accesses

Abstract

Experimental results from studying the kinetics of the high-temperature decomposition of ammonium perchlorate (AP) and polymethylmethacrylate (PMMA) using a radically improved method of linear pyrolysis are presented. The method used allowed kinetic data corresponding to high temperatures and reaction rates to be obtained (which cannot be done using classical isothermal methods). Patterns of the high-temperature decomposition of AP and PMMA that do not manifest themselves at low temperatures are characterized. The macrokinetics of the high-temperature decomposition of AP are shown to be strongly affected by dissociative sublimation at thermodynamic equilibrium, which yields ammonia and perchloric acid vapor. The activation energies of the high-temperature decomposition of PMMA and some other polymers were found to significantly exceed those of the limiting stages of their low-temperature decomposition. As the temperature grows, the kinetic mechanism of polymer decomposition changes. Because of this, the burning of polymers occurs in the “third mode,” characterized by an almost constant pyrolysis surface temperature over a wide range of polymer burning rates. Original data on the pyrolysis of solid propellant components obtained using the chemical arc (in which the stationary high-temperature decomposition of polymer and oxidizer occurs under the influence of the flat flame of interaction between the gaseous products of their linear pyrolysis) are presented. The effects of Fe2O3 and CuO (solid propellant combustion catalysts) on the rates of AP and PMMA linear pyrolysis are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Beckstead MW (2000) In: 29th JANNAF Propellant Development & Characterisation Meeting, Cocoa Beach, FL, USA, 8–12 May 2000

    Google Scholar 

  2. Bakhman NN, Belyaev AF (1967) Combustion of heterogeneous condensed systems. Nauka, Moscow

    Google Scholar 

  3. Korobeynichev OP (1971) (ed) Mechanism, kinetics and catalysis of thermal decomposition and combustion of ammonium perchlorate. Nauka, Novosibirsk

    Google Scholar 

  4. Schultz RD, Dekker AO (1955) In: Proceedings of the 5th Symposium on Combustion. Reinhold, New York

    Google Scholar 

  5. Chaiken RF (1959) Combust Flame 3:285

    Article  CAS  Google Scholar 

  6. Manelis GB, Nazin GM, Rubtsov YI, Strunin VA (2003) Thermal decomposition and combustion of explosives and propellants. Taylor & Francis, New York

    Google Scholar 

  7. Shaw RW, Brill TB, Thompson DL (2005) (eds) Advanced series in energetic materials: overviews of recent research on energetic materials, vol 16. World Scientific, Singapore

    Google Scholar 

  8. Shteinberg AS (1980) In: Merzhanov AG (ed) Heat and mass exchange in combustion processes. Nauka, Chernogolovka, p 85

    Google Scholar 

  9. Manelis GB, Strunin VA, Shteinberg AS (1968) Combust Explos Shock Waves 4:305

    CAS  Google Scholar 

  10. Bills KW, Mishuck E, Moe G, Schultz RD (1959) Combust Flame 3:301

    Article  Google Scholar 

  11. Ishihara A, Sarai Y, Konishi K, Andoh E (2005) Proc Combust Inst 30:2123

    Article  CAS  Google Scholar 

  12. Guinet M (1955) Fr Rech Aerospat 10:41

    Google Scholar 

  13. Jnami S, Rosser W, Weis NM (1963) J Phys Chem 67:1077

    Article  Google Scholar 

  14. Manelis GB, Strunin VA (1971) Combust Flame 17:69

    Article  CAS  Google Scholar 

  15. Maksimov EI, Grigor’ev YuM, Merzhanov AG (1966) Izv Akad Nauk SSSR Ser Khim 3:422

    Google Scholar 

  16. Shteinberg AS (1979) DSci thesis. State Institute of Applied Chemistry, Institute of Chemical Physics of the USSR Academy of Sciences, Chernogolovka, Russia

    Google Scholar 

  17. Grassi N (1959) Chemistry of polymer destruction. Inostrannaya Literatura, Moscow

    Google Scholar 

  18. Madorsky SL (1964) Thermal degradation of organic polymers. Wiley, New York

    Google Scholar 

  19. Blatz PJ (1963) 6th AGARD Colloquium. Pergamon, London

    Google Scholar 

  20. Zenin AA (1976) DSci thesis. Institute of Chemical Physics of the USSR Academy of Sciences, Moscow

    Google Scholar 

  21. Committee on Advanced Energetic Materials and Manufacturing Technologies (2004) Advanced energetic materials. Committee on Advanced Energetic Materials and Manufacturing Technologies, National Research Council of the National Academies, Washington, DC

    Google Scholar 

  22. Davenas A (1993) Solid propellant propulsion technology. Pergamon, Oxford

    Google Scholar 

  23. Chaiken RF (1962) J Chem Phys 37:2311

    Article  CAS  Google Scholar 

  24. Cantrell RH (1963) AIAAJ 1:1544

    CAS  Google Scholar 

  25. Tkachenko EV, Ulybin VB, Shteinberg AS (1969) Combust Explos Shock Waves 5:1116

    Article  Google Scholar 

  26. Shteinberg AS, Ulybin VB, Manelis GB, Dolgov EI (1972) In: Stesik LN (ed) Combustion and explosion. Nauka, Moscow, p 124

    Google Scholar 

  27. Reshetnikov SM, Morozova ZG (1979) Seminar on combustion of polymers and development of restrictedly combustible materials. Volgograg, Russia

    Google Scholar 

  28. Reshetnikov SM (1975) PhD thesis. Kazan’ Institute of Aviation, Kazan’

    Google Scholar 

  29. Shteinberg AS (1967) PhD thesis. Institute of Chemical Physics of the USSR Academy of Sciences, Chernogolovka, Russia

    Google Scholar 

  30. Manelis GB, Strunin VA (1972) In: Stesik LN (ed) Combustion and explosion. Nauka, Moscow, p 53

    Google Scholar 

  31. Rubtsov YuI, Manelis GB (1964) Rus J Phys Chem 37:1292

    Google Scholar 

  32. Puchkov VM (1978) PhD thesis. Institute of Chemical Physics of URRS Academy of Sciences, Chernogolovka, Russia

    Google Scholar 

  33. Zenin AA, Leypunsky OI, Puchkov VM (1971) Dokl Phys Chem 198:400

    Google Scholar 

  34. Puchkov VM, Zenin AA, Leypunsky OI (1972) In: Stesik LN (ed) Combustion and explosion. Nauka, Moscow, p 74

    Google Scholar 

  35. Manelis GB, Rubtsov YuI (1966) Rus J Phys Chem 40:416

    Google Scholar 

  36. Jacobs PW, Russel-Jones A (1967) AIAAJ 5:829

    Article  CAS  Google Scholar 

  37. Jacobs PW, Russel-Jones A (1968) J Phys Chem 72:202

    Article  CAS  Google Scholar 

  38. Barrer M, Liberer M (1965) In: 25th Meeting of the AGARD Combustion Panel, La Jolla, USA

    Google Scholar 

  39. Powling J, Smith WA (1962) Combust Flame 6:173

    Article  CAS  Google Scholar 

  40. Powling J, Smith WA (1963) Combust Flame 7:269

    Article  CAS  Google Scholar 

  41. Merzhanov AG (1973) Combust Explos Shock Waves 9:4

    Article  CAS  Google Scholar 

  42. Shteinberg AS, Ulybin VB (1969) In: 2nd All-Union Symp on Combustion and Explosion, Chernogolovka, Russia

    Google Scholar 

  43. Alekseev YuI, Korolyov VL, Knyazhitsky VP (1972) In: Stesik LN (ed) Combustion and explosion. Nauka, Moscow, p 128

    Google Scholar 

  44. Rusanov VP, Popov NP (1971) Teplofiz Vys Temp 1:9

    Google Scholar 

  45. Rusanov VP, Popov NP (1971) Teplofiz Vys Temp 2:40

    Google Scholar 

  46. Essenhigh RH, Lance Dreier W (1967) 5th Aerospace Meeting, New York, USA

    Google Scholar 

  47. Shchukin VK, Reshetnikov SM (1973) Trans Kazan’ Inst Aviat 154

    Google Scholar 

  48. Reshetnikov SM (1975) Trans Kazan’ Inst Aviat 184

    Google Scholar 

  49. Kirsanov YuA, Shchukin VK, Reshetnikov SM (1975) Combust Explos Shock Waves 10:15

    Google Scholar 

  50. Shchukin VK, Dresvyannikov FN, Kirsanov YuA (1973) College Trans Aviat Eng 4

    Google Scholar 

  51. Kirsanov YuA (1973) Trans Kazan’ Inst Aviat 158

    Google Scholar 

  52. Kirsanov YuA (1973) PhD thesis. Kazan’ Institute of Aviation, Kazan’

    Google Scholar 

  53. Shlensky OF, Aksenov LN, Shashkov AG (1991) Thermal Decomposition of Materials. Effect of Highly Intensive Heating. Elsevier, Amsterdam

    Google Scholar 

  54. Braginsky VI, Bakhman NN (1971) Combust Explos Shock Waves 7:240

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shteinberg, A.S. (2008). Study of the High-Temperature Decomposition of AP and PMMA by the Linear Pyrolysis Method. In: Fast Reactions in Energetic Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78861-4_3

Download citation

Publish with us

Policies and ethics