Skip to main content

De Novo Sequencing of Nonribosomal Peptides

  • Conference paper
Book cover Research in Computational Molecular Biology (RECOMB 2008)

Abstract

While nonribosomal peptides (NRPs) are of tremendous pharmacological importance, there is currently no technology capable of high-throughput sequencing of NRPs. Difficulties in sequencing NRPs slow down the progress in elucidating the non-ribosomal genetic code and negatively affect various screening programs aimed at the discovery of natural compounds of medical importance. We propose to employ multi-stage mass-spectrometry (MSn) for the data acquisition, followed by alignment-based heuristic algorithms for data analysis. Since mass spectrometry based analysis of NRPs is fast and inexpensive, this approach opens the possibility of high-throughput sequencing of many unknown NRPs accumulated in large screening programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sieber, S.A., Marahiel, M.A.: Molecular Mechanisms Underlying Nonribosomal Peptide Synthesis: Approaches to New Antibiotics. Chem. Rev. 105, 715–738 (2005)

    Article  Google Scholar 

  2. Dorrestein, P.C., Kelleher, N.L.: Dissecting Non-ribosomal and Polyketide Biosynthetic Machineries Using Electrospray Ionization Fourier-Transform Mass Spectrometry. Natural Product Reports 23, 893–918 (2006)

    Article  Google Scholar 

  3. Welker, M., Von Doehren, H.: Cyanobacterial Peptides - Nature’s Own Combinatorial Biosynthesis. FEMS Microbiology Reviews 30, 530–563 (2006)

    Article  Google Scholar 

  4. Butcher, B.G., Helmann, J.D.: Identification of Bacillus subtilis Sigma-dependent Genes that Provide Intrinsic Resistance to Antimicrobial Compounds Produced by Bacilli. Mol. Microbiol. 60, 765–782 (2006)

    Article  Google Scholar 

  5. Williams, D., Austin, P., Diaz-Marrero, A., Soest, R., Matainaho, T., Roskelley, C., Roberge, M., Andersen, R.: Neopetrosiamides, Peptides from the Marine Sponge Neopetrosia sp. That Inhibit Amoeboid Invasion by Human Tumor Cells. Organic Letters 7, 4173–4176 (2005)

    Article  Google Scholar 

  6. Luesch, H., Williams, P., Yoshida, W., Moore, R., Paul, V.: Ulongamides A-F, New Beta-Amino Acid-Containing Cyclodepsipeptides from Palauan Collections of the Marine Cyanobacterium Lyngbya sp. Journal of Natural Products 65, 996–1000 (2002)

    Article  Google Scholar 

  7. Hamada, T., Matsunaga, S., Yano, G., G nd Fusetani, N.: Polytheonamides A and B, Highly Cytotoxic, Linear Polypeptides with Unprecedented Structural Features, from the Marine Sponge, Theonella swinhoei. J Am. Chem. Soc. 127, 110–118 (2005)

    Article  Google Scholar 

  8. Ireland, C.M., Durso, A.R., Newman, R.A., Hacker, M.P.: Antineoplastic Cyclic Peptides from the Marine Tunicate Lissoclinum patella. J. Org. Chem. 47, 360–361 (1982)

    Article  Google Scholar 

  9. Kurosawa, K., Matsuura, K., Chida, N.: Total Synthesis of Stevastelins B3 and C3: Structure Confirmation of Stevastelin B3 and Revision of Stevastelin C3. Tetrahedron Letters 46, 389–392 (2005)

    Article  Google Scholar 

  10. Li, J., Burgett, A., Esser, L., Amezcua, C., G.Harran, P.: Total synthesis of nominal diazonamides: Part 2. on the true structure and origin of natural isolates. Angew. Chem Intl. Ed. Engl., 4771–4773 (2001)

    Google Scholar 

  11. Ikeda, H., Nonomiya, T., Ōmura, S.: Organization of Biosynthetic Gene Cluster for Avermectin in Streptomyces avermitilis: Analysis of Enzymatic Domains in Four Polyketide Synthases. Journal of Industrial Microbiology and Biotechnology 27, 170–176 (2001)

    Article  Google Scholar 

  12. Watanabe, K., Hotta, K., Praseuth, A.P., Koketsu, K., Migita, A., Boddy, C.N., Wang, C.C., Oguri, H., Oikawa, H.: Total Biosynthesis of Antitumor Nonribosomal Peptides in Escherichia coli. Nat. Chem. Biol. 2, 423–428 (2006)

    Article  Google Scholar 

  13. Barber, M., Bell, D.J., Morris, M.R., Tetler, L.W., Monaghan, J.J., Morden, W.E., Bycroft, B.W., Green, B.N.: An Investigation of the Tyrothricin Complex by Tandem Mass Spectrometry. International Journal of Mass Spectrometry and Ion Processes 122, 143–151 (1992)

    Article  Google Scholar 

  14. Hitzeroth, G., Vater, J., Franke, P., Gebhardt, K., Fiedler, H.P.: Whole Cell Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry and in situ Structure Analysis of Streptocidins, a Family of Tyrocidine-like Cyclic Peptides. Rapid Communications in Mass Spectrometry 19, 2935–2942 (2005)

    Article  Google Scholar 

  15. Gebhardt, K., Pukall, R., Fiedler, H.P.: Streptocidins A-D, Novel Cyclic Decapeptide Antibiotics Produced by Streptomyces sp. Tü 6071. I. Taxonomy, Fermentation, Isolation and Biological Activities. Antibiot. 54, 428–433 (2001)

    Google Scholar 

  16. Höltzel, A., Jack, R.W., Nicholson, G.J., Jung, G., Gebhardt, K., Fiedler, H.P., Süssmuth, R.D.: Streptocidins A-D, Novel Cyclic Decapeptide Antibiotics Produced by Streptomyces sp. Tü 6071. II. Structure elucidation. Antibiot. 54, 434–440 (2005)

    Google Scholar 

  17. Redman, J., Wilcoxen, K., Ghadiri, M.: Automated Mass Spectrometric Sequence Determination of Cyclic Peptide Library Members. Journal of Combinatorial Chemistry 5, 33–40 (2003)

    Article  Google Scholar 

  18. Olsen, J.V., Mann, M.: Improved Peptide Identification in Proteomics by Two Consecutive Stages of Mass Spectrometric Fragmentation. Proc. Natl. Acad. Sci. 101, 13417–13422 (2004)

    Article  Google Scholar 

  19. Ulintz, P.J., Bodenmiller, B., Andrews, P.C., Aebersold, R., Nesvizhskii, A.I.: Investigating MS2-MS3 Matching Statistics: A Model for Coupling Consecutive Stage Mass Spectrometry Data for Increased Peptide Identification Confidence. In: Molecular Cellular Proteomics, pp. M700128–MCP200 (2007)

    Google Scholar 

  20. Skiena, S.S., Sundaram, G.: A Partial Digest Approach to Restriction Site Mapping. Bulletin of Mathematical Biology 56, 275–294 (1994)

    MATH  Google Scholar 

  21. Rosenblatt, J., Seymour, P.D.: The Structure of Homometric Sets. SIAM Journal on Algebraic and Discrete Methods 3, 343–350 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cieliebak, M., Eidenbenz, S., Penna, P.: Partial Digest Problem is Hard to Solve for Erroneous Input Data. Theoretical Computer Science 349, 361–381 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Xu, C., Ma, B.: Complexity and Scoring Function of MS/MS Peptide De Novo Sequencing. Computational Systems Bioinformatics 5, 361–369 (2006)

    Google Scholar 

  24. Pevzner, P.A., Dancik, V., Tang, C.: Mutation-Tolerant Protein Identification by Mass Spectrometry. J Comput. Biol. 7, 777–787 (2000)

    Article  Google Scholar 

  25. Bandeira, N., Clauser, K.R., Pevzner, P.A.: Shotgun Protein Sequencing: Assembly of Peptide Tandem Mass Spectra from Mixtures of Modified Proteins. Mol. Cell Proteomics 6, 1123–1134 (2007)

    Article  Google Scholar 

  26. Bandeira, N., Tsur, D., Frank, A., Pevzner, P.A.: Protein Identification by Spectral Networks Analysis. Proceedings of the National Academy of Sciences 104, 6140–6145 (2007)

    Article  Google Scholar 

  27. Bern, M., Goldberg, D.: De Novo Analysis of Peptide Tandem Mass Spectra by Spectral Graph Partitioning. Journal of Computational Biology 13, 364–378 (2006)

    Article  MathSciNet  Google Scholar 

  28. Chen, T., Kao, M.Y., Tepel, M., Rush, J., Church, G.M.: A Dynamic Programming Approach to De Novo Peptide Sequencing via Tandem Mass Spectrometry. J Comput. Biol. 8, 325–337 (2001)

    Article  Google Scholar 

  29. B’Hymer, C., Montes-Bayon, M., Caruso, J.A.: Marfey’s Reagent: Past, Present, and Future Uses of 1-Fluoro-2,4-Dinitrophenyl-5-L-Alanine Amide. Journal of Separation Science 26, 7–19 (2003)

    Article  Google Scholar 

  30. Bandeira, N., Tang, H., Bafna, V., Pevzner, P.: Shotgun Protein Sequencing by Tandem Mass Spectra Assembly. Analytical Chemistry 76, 7221–7233 (2004)

    Article  Google Scholar 

  31. Dancik, V., Addona, T., Clauser, K., Vath, J., Pevzner, P.: De Novo Peptide Sequencing via Tandem Mass Spectrometry. J Comput. Biol. 6, 327–342 (1999)

    Article  Google Scholar 

  32. Frank, A.M., Pevzner, P.A.: PepNovo: De Novo Peptide Sequencing via Probabilistic Network Modeling. Anal. Chem. 77, 964–973 (2005)

    Article  Google Scholar 

  33. Mo, L., Dutta, D., Wan, Y., Chen, T.: MSNovo: A Dynamic Programming Algorithm for De Novo Peptide Sequencing via Tandem Mass Spectrometry. Anal. Chem. 79, 4870–4878 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Martin Vingron Limsoon Wong

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bandeira, N., Ng, J., Meluzzi, D., Linington, R.G., Dorrestein, P., Pevzner, P.A. (2008). De Novo Sequencing of Nonribosomal Peptides. In: Vingron, M., Wong, L. (eds) Research in Computational Molecular Biology. RECOMB 2008. Lecture Notes in Computer Science(), vol 4955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78839-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78839-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78838-6

  • Online ISBN: 978-3-540-78839-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics