Skip to main content

Abstract

MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that control gene expression at a posttranscriptional level. They are one of the most abundant class of gene regulatory molecules in multicellular organisms, and are being implicated in an increasing number of biological processes. Many miRNAs are expressed in a tissue-specific manner during development and take part in the regulation of cell-lineage decisions and morphogenesis. Moreover, much work is now highlighting their importance for malformations and disease. This chapter presents knowledge on miRNA biology, and then describes the recent findings regarding aspects of cardiovascular pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Behm-Ansmant I, Rehwinkel J, Doerks T et al (2006) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20:1885–1898

    Article  PubMed  CAS  Google Scholar 

  • Bentwich I (2005) Prediction and validation of microRNAs and their targets. FEBS Lett 579:5904–5910

    Article  PubMed  CAS  Google Scholar 

  • Berezikov E, Guryev V, van de Belt J et al (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120:21–24

    Article  PubMed  CAS  Google Scholar 

  • Brennecke J, Stark A, Cohen SM (2005) Not miR-ly muscular: microRNAs and muscle development. Genes Dev 19:2261–2264

    Article  PubMed  CAS  Google Scholar 

  • Brown JR, Sanseau P (2005) A computational view of microRNAs and their targets. Drug Discov Today 10:595–601

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Del Re DP, Sussman MA (2006) The Rac and Rho hall of fame: a decade of hypertrophic signaling hits. Circ Res 98:730–742

    Article  PubMed  CAS  Google Scholar 

  • Carè A, Catalucci D, Felicetti F et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618

    Article  PubMed  Google Scholar 

  • Catalucci D, Latronico M, Condorelli G (2008) Physiological myocardial hypertrophy: how and why? Front Biosci 13:312–324

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri K, Chatterjee R (2007) MicroRNA detection and target prediction: integration of computational and experimental approaches. DNA Cell Biol 26:321–337

    Article  PubMed  CAS  Google Scholar 

  • Chen CZ, Li L, Lodish HF et al (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    Article  PubMed  CAS  Google Scholar 

  • Chen JF, Mandel EM, Thomson JM et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233

    Article  PubMed  CAS  Google Scholar 

  • Chendrimada TP, Finn KJ, Ji X et al (2007) MicroRNA silencing through RISC recruitment of eIF6. Nature 447:823–828

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Ji R, Yue J et al (2007) MicroRNAs are aberrantly expressed in hypertrophic heart. Do they play a role in cardiac hypertrophy? Am J Pathol 170(6):1831–1840

    Article  PubMed  CAS  Google Scholar 

  • Clop A, Marcq F, Takeda H et al (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38:813–818

    Article  PubMed  CAS  Google Scholar 

  • Das AK, Carmichael GG (2007) ADAR editing wobbles the microRNA world. Chem Biol 2:217–220

    CAS  Google Scholar 

  • Farh KK, Grimson A, Jan C et al (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310:1817–1821

    Article  PubMed  CAS  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  PubMed  CAS  Google Scholar 

  • Giraldez AJ, Mishima Y, Rihel J et al (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79

    Article  PubMed  CAS  Google Scholar 

  • Gregory RI, Chendrimada TP, Cooch N et al (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S (2004) The microRNA Registry. Nucleic Acids Res 32:D109–D111

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S et al (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144

    Article  PubMed  CAS  Google Scholar 

  • Grimson A, Farh KK, Johnston WK et al (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  PubMed  CAS  Google Scholar 

  • Harfe BD, McManus MT, Mansfield JH et al (2005) The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci USA 102:10898–10903

    Article  PubMed  CAS  Google Scholar 

  • Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell 5:351–358

    Article  PubMed  CAS  Google Scholar 

  • Humphreys DT, Westman BJ, Martin DI et al (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA 102:16961–16966

    Article  PubMed  CAS  Google Scholar 

  • Hwang HW, Wentzel EA, Mendell JT (2007) A hexanucleotide element directs microRNA nuclear import. Science 315:97–100

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Zinshteyn B, Sethupathy P et al (2007) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315:1137–1140

    Article  PubMed  CAS  Google Scholar 

  • Ke Y, Wang L, Pyle WG et al (2004) Intracellular localization and functional effects of P21-activated kinase-1 (Pak1) in cardiac myocytes. Circ Res 94:194–200

    Article  PubMed  CAS  Google Scholar 

  • Kim VN (2004) MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends Cell Biol 14:156–159

    Article  PubMed  CAS  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    Article  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Jeon K, Lee JT et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  PubMed  CAS  Google Scholar 

  • Lingel A, Simon B, Izaurralde E et al (2003) Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426:465–469

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Valencia-Sanchez MA, Hannon GJ et al (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7:719–723

    Article  PubMed  CAS  Google Scholar 

  • Luciano DJ, Mirsky H, Vendetti NJ et al (2004) RNA editing of a miRNA precursor. RNA 10:1174–1177

    Article  PubMed  CAS  Google Scholar 

  • Mansfield JH, Harfe BD, Nissen R et al (2004) MicroRNA-responsive ‘sensor’ transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 36:1079–1083

    Article  PubMed  CAS  Google Scholar 

  • Mariotti M, Manganini M, Maier JA (2000) Modulation of WHSC2 expression in human endothelial cells. FEBS Lett 487:166–170

    Article  PubMed  CAS  Google Scholar 

  • Maroney PA, Yu Y, Fisher J et al (2006) Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol 13:1102–1107

    Article  PubMed  CAS  Google Scholar 

  • McCarthy JJ, Esser KA (2007) MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol 102:306–313

    Article  PubMed  CAS  Google Scholar 

  • McFadden DG, Barbosa AC, Richardson JA et al (2005) The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development 132:189–201

    Article  PubMed  CAS  Google Scholar 

  • Nottrott S, Simard MJ, Richter JD (2006) Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 13:1108–1114

    Article  PubMed  CAS  Google Scholar 

  • Obernosterer G, Leuschner PJ, Alenius M et al (2006) Post-transcriptional regulation of microRNA expression. RNA 12:1161–1167

    Article  PubMed  CAS  Google Scholar 

  • Okamura K, Hagen JW, Duan H et al (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130:89–100

    Article  PubMed  CAS  Google Scholar 

  • Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216:671–680

    Article  PubMed  CAS  Google Scholar 

  • Peters L, Meister G (2007) Argonaute proteins: mediators of RNA silencing. Mol Cell 26:611–623

    Article  PubMed  CAS  Google Scholar 

  • Pillai RS, Bhattacharyya SN, Artus CG et al (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309:1573–1576

    Article  PubMed  CAS  Google Scholar 

  • Poy MN, Eliasson L, Krutzfeldt J et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230

    Article  PubMed  CAS  Google Scholar 

  • Prasanth KV, Prasanth SG, Xuan Z et al (2005) Regulating gene expression through RNA nuclear retention. Cell 123:249–263

    Article  PubMed  CAS  Google Scholar 

  • Rao PK, Kumar RM, Farkhondeh M et al (2006) Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA 103:8721–8726

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez A, Griffiths-Jones S, Ashurst JL et al (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910

    Article  PubMed  CAS  Google Scholar 

  • Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86

    Article  PubMed  CAS  Google Scholar 

  • Sayed D, Hong C, Chen IY et al (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100:416–424

    Article  PubMed  CAS  Google Scholar 

  • Schmitter D, Filkowski J, Sewer A et al (2006) Effects of Dicer and Argonaute down-regulation on mRNA levels in human HEK293 cells. Nucleic Acids Res 34:4801–4815

    Article  PubMed  CAS  Google Scholar 

  • Sempere LF, Freemantle S, Pitha-Rowe I et al (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13

    Article  PubMed  Google Scholar 

  • Sokol NS, Ambros V (2005) Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev 19:2343–2354

    Article  PubMed  CAS  Google Scholar 

  • Stark A, Brennecke J, Bushati N et al (2005) Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123:1133–1146

    Article  PubMed  CAS  Google Scholar 

  • Suh MR, Lee Y, Kim JY et al (2004) Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270:488–498

    Article  PubMed  CAS  Google Scholar 

  • Tang G (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30:106–114

    Article  PubMed  CAS  Google Scholar 

  • Tatsuguchi M, Seok HY, Callis TE et al (2007) Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 42:1137–1141

    Article  PubMed  CAS  Google Scholar 

  • Thum T, Galuppo P, Wolf C et al (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116:258–267

    Article  PubMed  CAS  Google Scholar 

  • Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  PubMed  CAS  Google Scholar 

  • van Rooij E, Sutherland LB, Liu N et al (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103:18255–18260

    Article  PubMed  Google Scholar 

  • van Rooij E, Sutherland LB, Qi X et al (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316:575–579

    Article  PubMed  Google Scholar 

  • Weiler J, Hunziker J, Hall J (2006) Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther 13:496–502

    Article  PubMed  CAS  Google Scholar 

  • Wienholds E, Kloosterman WP, Miska E et al (2005) MicroRNA expression in zebrafish embryonic development. Science 309:310–311

    Article  PubMed  CAS  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA 103:4034–4039

    Article  PubMed  CAS  Google Scholar 

  • Xiao J, Luo X, Lin H et al (2007a) MicroRNA miR-133 Represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem 282:12363–12367

    Article  PubMed  CAS  Google Scholar 

  • Xiao J, Yang B, Lin H et al (2007b) Novel approaches for gene-specific interference via manipulating actions of microRNAs: examination on the pacemaker channel genes HCN2 and HCN4. J Cell Physiol 212:285–292

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Vernooy SY, Guo M et al (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13:790–795

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Guo M, Hay BA (2004) MicroRNAs and the regulation of cell death. Trends Genet 20:617–624

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Chendrimada TP, Wang Q et al (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13:13–21

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Lin H, Xiao J et al (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13:486–491

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Sternsdorf T, Bolger TA et al (2005a) Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Mol Cell Biol 25:8456–8464

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Samal E, Srivastava D (2005b) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Ransom JF, Li A et al (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1–2. Cell 129:303–317

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Catalucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Catalucci, D., Latronico, M.V.G., Condorelli, G. (2008). MicroRNAs and the Control of Heart Pathophysiology. In: Erdmann, V.A., Poller, W., Barciszewski, J. (eds) RNA Technologies in Cardiovascular Medicine and Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78709-9_4

Download citation

Publish with us

Policies and ethics