Skip to main content

Influence of Local Weld Deformation on the Solidification Cracking Susceptibility of a Fully Austenitic Stainless Steel

  • Chapter

Abstract

For the evaluation of the solidification cracking behaviour of welded structures, the influence of the external boundary conditions needs to be considered, in addition to the metallurgical aspects. Against this background, the solidification crack formation in a fully austenitic stainless steel under variation of external restraint was examined in this study.

For this purpose, a newly developed hot cracking test (CTW test) was used for the first time, which allows application of a defined tensile load transverse to the welding direction during welding. In addition, the strains and strain rates could be determined with the help of a mechanical-electrical measuring device in the near field of the weld pool. These values were examined both under free contraction and varied external load, i.e. under different constant cross head speeds. The Critical strain and strain rate required for the propagation of macroscopic surface cracks were determined. By means of high speed recording the authors succeeded in correlating strain and strain rate with the relative position of the weld pool. In addition, centreline crack initiation and growth were located.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prochorow NN, Jakuschin BF, Prochorow N Nikol (1968) Theorie und Verfahren zum Bestimmen der technologischen Festigkeit von Metallen während des Kristallisationsprozesses beim Schweiβen (in German). Schweiβen und Schneiden 18 1:8–11

    Google Scholar 

  2. Rappaz M, Drezet, JM, Gremaud M (1999) A New Hot-Tearing Criterion. Metallurgical and Materials Transactions A vol 30A February:449–455

    Article  Google Scholar 

  3. Cross CE (2005) On the Origin of Weld Solidification Cracking. In: Böllinghaus Th, Herold H (eds) Hot Cracking Phenomena in Welds. Springer, Berlin Heidelberg, pp 3–18

    Chapter  Google Scholar 

  4. Feng Z, Zacharia T, David SA (1997) On the Thermomechanical Conditions for Weld Metal Solidification Cracking. In: Cerjak H (ed) Mathematical Modelling of Weld Phenomena 3. Maney Publishing, London, pp 114–148

    Google Scholar 

  5. Feng Z, Zacharia T, David SA (1997) Thermal Stress Development in a Nickel Based Superalloy During Weldability Test. Welding Research Supplement November:470–483

    Google Scholar 

  6. Feng Z, Tsai CL (1993) Modelling the Thermomechanical Conditions at Weld Pool. In: Zacharia T (ed) International Conference Proceedings on Modelling and Control of Joining Processes, American Welding Society, Florida, U.S.A., pp 525–533

    Google Scholar 

  7. Zacharia T (1994) Dynamic Stresses in Weld Metal Hot Cracking. Welding Research Supplement July:164–172

    Google Scholar 

  8. Zacharia T, Aramayo GA (1993) Modelling of Thermal Stresses in Welds. In: Zacharia T (ed) International Conference Proceedings on Modelling and Control of Joining Processes, American Welding Society, Miami, Florida, U.S.A., pp 533–540

    Google Scholar 

  9. Kannengiesser Th, McInerny T, Florian W, Boellinghaus Th, Cross, CE (2002) The Influence of local weld deformation on hot cracking susceptibility. In: Cerjak H (ed) Mathematical Modelling of Weld Phenomena 6. Maney Publishing, London, pp 803–818

    Google Scholar 

  10. Wolf M, Kannengieβer Th (2005) Moderne Prüfverfahren zur Bestimmung der Heiβrisssicherheit beim Schweiβen von hochlegierten Stählen und Nickelbasislegierungen (in German). In: Grellmann W (ed) Tagungsband Werkstoffprüfung. Verlag Stahleisen GmbH, Düsseldorf, pp 419–426

    Google Scholar 

  11. Kromm A, Kannengieβer Th (2006) Anwendung des neuen Controlled Tensile Weldability (CTW) Tests zur Untersuchung der Heiβrissneigung (in German). In: Borsutzki M, Geisler S (eds) Tagungsband Werkstoffprüfung. Verlag Stahleisen GmbH, Düsseldorf, pp 451–456

    Google Scholar 

  12. Brooks JA, Dike JJ, Krafcik JS (1993) On Modelling Weld Solidification Cracking. In: Zacharia T (ed) International Conference Proceedings on Modelling and Control of Joining Processes, American Welding Society, Miami, Florida, U.S.A., pp 174–185

    Google Scholar 

  13. Dike JJ, Brooks JA, Li M (1998) Comparison of Failure Criteria in Weld Solidification Cracking Simulations. In: Cerjak H (ed) Mathematical Modelling of Weld Phenomena 4. Maney Publishing, London, pp 199–222

    Google Scholar 

  14. Brooks JA, Dike JJ (1998) Modelling Weld Solidification Cracking Behavior in Aluminum Alloys-Analysis of Fracture Initiaton. In: Vitek JM, David SA, Johnson JA, Smartt HB, DebRoy T (eds) Trends in Welding Research, Proceedings of the 5th International Conference. Materials Park, Ohio, U.S.A., pp 695–699

    Google Scholar 

  15. Dike JJ, Brooks JA, Krafcik JS (1995) Finite Element Modelling and Verification of Thermal-Mechanical Behavior in the Weld Pool Region. In: Smartt HB, Johnson JA, David SA (eds) Trends in Welding Research, Proceedings of the 4th International Conference. ASM International, Materials Park, Ohio, U.S.A., pp 159–164

    Google Scholar 

  16. Johnson L (1973) Formation of Plastic Strains During Welding of Aluminum Alloys. Welding Research Supplement July:298–305

    Google Scholar 

  17. Chihoski RA (1979) Expansion and Stress Around Aluminum Weld Puddles. Welding Research Supplement September:263–276

    Google Scholar 

  18. Chihosky RA (1972) The Character of Stress Fields Around a Weld Arc Moving on Aluminum Sheet. Welding Research Supplement January:9–18

    Google Scholar 

  19. Goodwin GM (1987) Development of a New Hot-Cracking Test – The Sigmajig. Welding Research Supplement February:33–38

    Google Scholar 

  20. Kannengieβer Th, Kromm A (2007) Design-Specific Influences on Local Weld Displacement and Hot Cracking. Proceedings to II. International Conference in Welding and Joining of Materials-ICWJM 2007, Cusco, Peru, 16.-18.4.2007, pp 1–9

    Google Scholar 

  21. Wilken K, Kleistner H (1982) Der MVT-Test – ein neues universelles Verfahren zur Prüfung der Heiβrissanfälligkeit beim Schweiβen (in German). Material und Technik 1:3–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kromm, A., Kannengießer, T. (2008). Influence of Local Weld Deformation on the Solidification Cracking Susceptibility of a Fully Austenitic Stainless Steel. In: Böllinghaus, T., Herold, H., Cross, C.E., Lippold, J.C. (eds) Hot Cracking Phenomena in Welds II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78628-3_8

Download citation

Publish with us

Policies and ethics