Skip to main content

Consideration of the Welding Process as a Thermo-Physical Mechanism to Control Cracking in Weldments

  • Chapter
Book cover Hot Cracking Phenomena in Welds II

Abstract

Prevention of cracking in weldments is the result of understanding and evaluating extensive experience from cases of damage. The welding process-con trolled mechanics for the initiation of weldment cracking by extensive strain due to thermal expansion of the moving weld pool with its surrounding temperature field, and a local characterisation of the dynamic non-linear behaviour during solidification in, around and behind the weld pool in interaction with the weldment restraint are described in terms of thermo-physical mechanics. Different experience from solidification cracking assessment results in a concept for controlling weldment cracking by means of thermo-physical mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pellini WSF (1952) Foundry 80:125–133, 192, 194, 196, 199

    Google Scholar 

  2. Satoh K, Terasaki T et al. (1980) Changes of root gap during welding in case of butt weld joints (1st Report). J Japan Weld Soc vol 49 7:478–483 (in Japanese)

    Google Scholar 

  3. Ueda Y, Murakawa H et al. (1992) Simulation of welding deformation for precision ship assembling (Report I) – In-plane deformation of butt welded plate. Trans JWRI vol 21 2:125–135

    Google Scholar 

  4. Andersson B, Karlsson L (1981) Thermal stresses in large butt-welded plates. J Thermal Stress 4:491–500

    Article  Google Scholar 

  5. Herold H, Streitenberger M, Pchennikov A, Makarov E (1998) Modelling of one sided welding to describe hot cracking at the end of longer butt weld seams. (1999) Weld in the World vol 43 2:56–64

    Google Scholar 

  6. Herold H, Streitenberger M, Pchennikov A (2001) Prevention of centreline solidification cracking during one-side welding. Doc IIW-Doc. IX-2000-01

    Google Scholar 

  7. Wilken K (1999) Investigation to compare hot cracking tests – Externally loaded specimen. (1999) Doc IIW IX-1945–99

    Google Scholar 

  8. PrEN ISO 17641-1 (Nov. 2003) Destructive tests on welds in metallic materials – Hot cracking tests for weldments – Arc welding processes – Part 1: General (ISO/FDIS 17641-1:1003)

    Google Scholar 

  9. PrEN ISO 17641-2 (Nov. 2003) Destructive tests on welds in metallic materials – Hot cracking tests for weldments – Arc welding processes – Part 2: Self-restraint tests (ISO/FDIS 17641-2:1003)

    Google Scholar 

  10. prCEN ISO/TR 17641-3 (Nov. 2003) Destructive tests on welds in metallic materials – Hot cracking tests for weldments –Arc welding processes – Part 3: Externally loaded tests (ISO/DTR 17641-3:1003)

    Google Scholar 

  11. Folkhard E (1984) Metallurgie der Schweiβung nichtrostender Stähle. Springer, Wien New York, pp 153

    Google Scholar 

  12. Herold H, Schulze S, Streitenberger M, Spieler S (1998) Mikroschädigungen von NiMo-Werkstoffen. In: Petzow G. (eds) Praktische Metallographie 29 Fortschritte in der Metallographie. DGM Informationsgesellschaft mbH, pp 175–180

    Google Scholar 

  13. Herold H, Streitenberger M, Pchennikov A (2001) Hot Cracking Theory by Prokhorov and Modelling of the PVR-test. Weld World vol 45:3/4, 17–22

    Google Scholar 

  14. Herold H, Zinke M, Hübner A (2004) Investigation on the use of nitrogen shielding gas in welding and its influence on hot crack behaviour of high-temperature resistant fully austenitic Ni- and Fe-base Alloys. IIW-Doc IX-2110-04

    Google Scholar 

  15. Herold H, Pchennikov A, Streitenberger M (2005) Influence of deformation rate of different tests on hot cracking formation. In: Böllinghaus T, Herold H (eds) Hot cracking phenomena in welds. Springer, Berlin Heidelberg, pp 328–346

    Chapter  Google Scholar 

  16. Merkblatt DVS 2401 (Aug. 2004) Fracture mechanical assessment of cracks on welded components. Fachbuchreihe Schweiβtechnik Bd. 101. DVS-Verlag GmbH, Düsseldorf

    Google Scholar 

  17. BS 7448 Part 2: Seventh draft (revised) Draft British Standard (1996) Fracture mechanics toughness test. Part 2: method for determination of KIC, critical CTOD and critical J valued of weld in metallic materials

    Google Scholar 

  18. Blauel JG (1993) IIW-case study collection on the assessment of the significance of weld imperfection. IIW-Doc. X-1280-93, XE 35-93

    Google Scholar 

  19. Campbell J (1991) Castings, Butterworth-Heinemann-Ltd. pp 175–240

    Google Scholar 

  20. Hunt JD (1979) Solidification and Casting of metals. The Metals Society London

    Google Scholar 

  21. Hunt JD (1979) Solidification and Casting of metals. The Metals Society London

    Google Scholar 

  22. Feurer U (1976) Gieβerei 23:75–80

    Google Scholar 

  23. Clyne TW, Davies GJ (1981) Brit Foundry vol 74 4:65–73

    Google Scholar 

  24. Clyne TW, Kurz W (1981) Metallurgical trans vol A 12:965–971

    Google Scholar 

  25. Rappaz M, Drezet J-M, Gremaud M (1999) A New Hot-Tearing Criterion. Metallurgical and Materials trans vol 30A 2:449–455

    Article  Google Scholar 

  26. Drezet J-M, Mathier V, Allehoux D (2006) The modeling of laser beam welding of Aluminium alloys with special attention to hot cracking in transient regimes. In: Cerjak H, Bhadeshia HK, Kozeschnik E (eds) Math. Modelling of Welding Phenomena 8, presented

    Google Scholar 

  27. Drezet J-M, Gremaud M, Graf R Gräumann M (2002) A new hot tearing criterion for steel. In: Proc 4th International Continuous Casting Conference, IOM communications, Birmingham, UK, pp 755–763

    Google Scholar 

  28. Rindler W, Kozeschnik E, Enzinger N, Buchmayr B (2002) A modifyied hot tearing criterion for steels. In: Cerjak H, Bhadeshia HK (eds) Math. Modelling of Welding Phenomena 6, IOM Communication, UK, pp 819–835

    Google Scholar 

  29. Prokhorov NN, Prokhorov N (1968) Schweiβtechnik (Berlin) vol 19 1:8–11

    Google Scholar 

  30. Pchennikov A, Streitenberger M, Herold H (2004) Application and further development of Prokhorov‘s solidification-cracking theory. IIW-Doc. IX-2160r1-05

    Google Scholar 

  31. Herold H, Pchennikov A, Streitenberger M (2004) Assessment of hot cracking initiation by laboratory test procedures and FEA simulation associated experimental measurements during welding of large weld components. Quarterly Journal of Japan Welding Society, vol 22 2:211–217

    Article  Google Scholar 

  32. Pchennikov A (2005) Entwicklung von Maβnahmen zur Heiβrissvermeidung beim Einseitenschweiβen langer Nähte. Diss, Otto-von-Guericke Universität Magdeburg

    Google Scholar 

  33. Pchennikov A, Gruss H, Herold H (2006) Avoidance of hot cracking at unsteady weld start on laser beam welding of Aluminium. In: Cerjak H, Bhadeshia HK, Kozeschnik E (eds) Math. Modelling of Welding Phenomena 8, presented

    Google Scholar 

  34. Feng Z, Zaharia T, David SA (1997) On the thermomechanical conditions for weld metal solidification cracking. In: Cerjak H, Bhadeshia HK (eds) Math. Modelling of Welding Phenomena 3, The Institute of Materials, Cambridge UK, pp 114–150

    Google Scholar 

  35. Shibahara M, Serizawa H, Murakawa H (1999) Finite Element Method for hot cracking using temperature dependent interface element. Trans JWRI vol 28 1:47–53

    Google Scholar 

  36. Shibahara M, Serizawa H, Murakawa H (2000) Finite Element Method for hot cracking using temperature dependent interface element (Report II). Trans JWRI vol 29 1:59–64

    Google Scholar 

  37. Ploshikhin V, Prikhodovsky A, Makhutin M, Llin A, Zoch H-W (2005) Integrated mechanical-metallurgical approach to modelling of solidification cracking in welds. In: Böllinghaus T, Herold H (eds) Hot Cracking Phenomena in Welds 1, Springer, Berlin Heidelberg, pp 223–244

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herold, H., Streitenberger, M. (2008). Consideration of the Welding Process as a Thermo-Physical Mechanism to Control Cracking in Weldments. In: Böllinghaus, T., Herold, H., Cross, C.E., Lippold, J.C. (eds) Hot Cracking Phenomena in Welds II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78628-3_4

Download citation

Publish with us

Policies and ethics