Skip to main content

The Biofilm Model of Freter: A Review

  • Chapter

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 1936))

R. Freter et al. (1983) developed a simple chemostat-based model of competition between two bacterial strains, one of which is capable of wall-growth, in order to illuminate the role of bacterial wall attachment on the phenomenon of colonization resistance in the mammalian gut. Together with various collaborators, we have re-formulated the model in the setting of a tubular flow reactor, extended the interpretation of the model as a biofilm model, and provided both mathematical analysis and numerical simulations of solution behavior. The present paper provides a review of the work in [4–6, 31–35, 45, 46].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Aris: Mathematical Modeling, a Chemical Engineer’s Perspective (Academic, New York 1999)

    MATH  Google Scholar 

  2. J. Bailey, D. Ollis: Biochemical Engineering Fundamentals, 2nd edn (McGraw Hill, New York 1986)

    Google Scholar 

  3. M. Ballyk, D. Jones, D. Le, H.L. Smith: Effects of random motility on microbial growth and competition in a flow reactor, SIAM J. Appl. Math. 59, 2 (1998) pp 573–596

    Google Scholar 

  4. M. Ballyk, D. Jones, H.L. Smith: Microbial competition in reactors with wall attachment: a comparison of chemostat and plug flow models, Microb. Ecol. 41 (2001) pp 210–221

    Google Scholar 

  5. M. Ballyk, H.L. Smith: A Flow reactor with wall growth. In: Mathematical Models in Medical and Health Sciences, ed by M. Horn, G. Simonett, G. Webb (Vanderbilt University Press, Nashville, TN 1998)

    Google Scholar 

  6. M. Ballyk, H.L. Smith: A model of microbial growth in a plug flow reactor with wall attachment, Math. Biosci. 158 (1999) pp 95–126

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Baltzis, A. Fredrickson: Competition of two microbial populations for a single resource in a chemostat when one of them exhibits wall attachment, Biotechnol. Bioeng. 25 (1983) pp 2419–2439

    Article  Google Scholar 

  8. R. Bakke, M.G. Trulear, J.A. Robinson, W.G. Characklis: Activity of Pseudomonas aeruginosa in biofilms: steady state, Biotechnol. Bioeng. 26 (1984) pp 1418–1424

    Article  Google Scholar 

  9. H. Berg: Random Walks in Biology (Princeton University Press, Princeton, NJ 1983)

    Google Scholar 

  10. A. Berman, R. Plemmons: Nonnegative Matrices in the Mathematical Sciences (Academic, New York 1979)

    MATH  Google Scholar 

  11. J. Bryers, ed: Biofilms II, Process Analysis and Applications, Wiley series in Ecological and Applied Microbiology (Wiley-Liss, NY 2000)

    Google Scholar 

  12. W. Characklis, K. Marshall (eds): Biofilms, Wiley Series in Ecological and Applied Microbiology (Wiley, New York 1990)

    Google Scholar 

  13. N.G. Cogan: Effects of persister formation on bacterial response to dosing, J. Theor. Biol. 238, 3 (2006) pp 694–703

    Google Scholar 

  14. N.G. Cogan and J.P. Keener: The role of the biofilm matrix in structural development, Math. Med. Biol. 21 (2004) pp 147–166

    Article  MATH  Google Scholar 

  15. J. Costerton: Overview of microbial biofilms, J. Indust. Microbiol. 15 (1995) pp 137–140

    Article  Google Scholar 

  16. J. Costerton, P. Stewart, E. Greenberg: Bacterial biofilms: a common cause of persistent infections, Science 284 (1999) pp 1318–1322

    Article  Google Scholar 

  17. J. Costerton, Z. Lewandowski, D. Debeer, D. Caldwell, D. Korber, G. James: Biofilms, the customized microniche, J. Bacteriol. 176 (1994) pp 2137–2142

    Google Scholar 

  18. J. Costerton, Z. Lewandowski, D. Caldwell, D. Korber, H. Lappin-Scott: Microbial biofilms, Annu. Rev. Microbiol. 49 (1995) pp 711–745

    Article  Google Scholar 

  19. O. Diekmann, J. Heesterbeek: Mathematical Epidemiology of Infectious Diseases, Model Building, Analysis and Interpretation (Wiley, Chichester 2000)

    Google Scholar 

  20. R. Dillon, L. Fauci, A. Fogelson, D. Gaver: Modeling biofilm processes using the immersed boundary method, J. Comput. Phys. 129 (1996) pp 57–73

    Article  MATH  Google Scholar 

  21. J. Dockery, I. Klapper: Finger formation in biofilm layers, SIAM J. Appl. Math. 62 (2001) pp 853–869

    MATH  MathSciNet  Google Scholar 

  22. H.J. Eberl, D.F. Parker, M.C.M. van Loosdrecht: A new deterministic spatio-temporal continuum model for biofilm development, J. Theor. Med. 3 (3) (2001) pp 161–175

    MATH  Google Scholar 

  23. R. Freter: Interdependence of mechanisms that control bacterial colonization of the large intestine, Microecol. Ther. 14 (1984) pp 89–96

    Google Scholar 

  24. R. Freter: Mechanisms that control the microflora in the large intestine. In: Human Intestinal Microflora in Health and Disease, ed by D. Hentges (Academic, New York 1983)

    Google Scholar 

  25. R. Freter, H. Brickner, J. Fekete, M. Vickerman, K. Carey: Survival and implantation of Escherichia coli in the intestinal tract, Infect. Immun. 39 (1983) pp 686–703

    Google Scholar 

  26. R. Freter, H. Brickner, S. Temme: An understanding of colonization resistance of the mammalian large intestine requires mathematical analysis, Microecol. Ther. 16 (1986) pp 147–155

    Google Scholar 

  27. C.A. Fux, J.W. Costerton, P.S. Stewart, and P. Stoodley, Survival strategies of infectious biofilms, Trends Microbiol., 13 (2005) pp 34–40

    Article  Google Scholar 

  28. D. Herbert, R. Elsworth, R. Telling: The continuous culture of bacteria; a theoretical and experimental study, J. Can. Microbiol. 14 (1956) pp 601–622

    Google Scholar 

  29. M. Imran, D. Jones, H.L. Smith: Biofilms and the plasmid maintenance question, Math. Biosci. 193 (2005) pp 183–204

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Imran, H.L. Smith: A mathematical model of gene transfer in a biofilm. In: Mathematics for Ecology and Environmental Sciences, Vol.1 (Springer, Berlin Heidelberg New York 2006)

    Google Scholar 

  31. D. Jones, H. Kojouharov, D. Le, H.L. Smith: Bacterial wall attachment in a flow reactor: mixed culture, Can. Appl. Math. Q. 10 (2004) pp 111–138

    MathSciNet  Google Scholar 

  32. D. Jones, H. Kojouharov, D. Le, H.L. Smith: Bacterial wall attachment in a flow reactor, SIAM J. Appl. Math. 62 (2002) pp 1728–1771

    Article  MATH  MathSciNet  Google Scholar 

  33. D. Jones, H. Kojouharov, D. Le, H.L. Smith: Microbial Competition for Nutrient in a 3D Flow Reactor, Dynamics of Continuous, Discrete Impulsive Dynamical Syst. 10 (2003) pp 57–67

    MATH  MathSciNet  Google Scholar 

  34. D. Jones, H. Kojouharov, D. Le, H.L. Smith: The Freter model: a simple model of biofilm formation, J. Math. Biol. 47 (2003) pp 137–152

    Article  MATH  MathSciNet  Google Scholar 

  35. D. Jones, H.L. Smith: Microbial competition for nutrient and wall sites in plug flow, SIAM J. Appl. Math. 60 (2000) pp 1576–1600

    Article  MATH  MathSciNet  Google Scholar 

  36. J.-U. Kreft, C. Picioreanu, J. Wimpenny, M. van Loosdrecht: Individual-based modelling of biofilms, Microbiology 147 (2001) pp 2897–2912

    Google Scholar 

  37. C.M. Kung, B. Baltzis: The growth of pure and simple microbial competitors in a moving distributed medium, Math. Biosci. 111 (1992) pp 295–313

    Article  MATH  Google Scholar 

  38. C.S. Laspidou and B.E. Rittmann: Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances, Water Res. 38 (2004) pp 3349–3361

    Article  Google Scholar 

  39. D. Noguera, S. Okabe, C. Picioreanu: Biofilm modeling: present status and future directions, Water Sci. Technol. 39 (1999) pp 273–278

    Google Scholar 

  40. D. Noguera, G. Pizarro, D. Stahl, B. Rittman: Simulation of multispecies biofilm development in three dimensions, Wat.Sci. Tech. 39 (1999) 123–130

    Google Scholar 

  41. C. Picioreanu, M.C.M. van Loosdrecht, J. Heijnen: Mathematical Modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach, Biotechnol. Bioeng. 58 (1998) pp 101–116

    Article  Google Scholar 

  42. S. Pilyugin and P. Waltman: The simple chemostat with wall growth, SIAM J. Appl. Math. 59 (1999) pp 1552–1572

    Article  MATH  MathSciNet  Google Scholar 

  43. H.L. Smith: A semilinear hyperbolic system, Proceedings of the Mathematics Conference, ed by S. Elyadi, F. Allan, A. Elkhader, T. Muhgrabi, M. Saleh (World Scientific, Singapore 2000)

    Google Scholar 

  44. H.L. Smith, P. Waltman: The Theory of the Chemostat (Cambridge University Press, New York 1995)

    MATH  Google Scholar 

  45. H.L. Smith, X.-Q. Zhao: Microbial growth in a plug flow reactor with wall attachment and cell motility, JMAA 241 (2000) pp 134–155

    MATH  MathSciNet  Google Scholar 

  46. E. Stemmons, H.L. Smith, H.L.: Competition in a chemostat with wall attachment, SIAM J. Appl. Math. 61 (2000) pp 567–595

    Google Scholar 

  47. P. Stewart, G. Mcfeters, C.-T. Huang: Biofilm control by antimicrobial agents, Chapter 11. In: Biofilms II: Process Analysis and Applications, ed by J. Bryers (Wiley-Liss, New York 2000)

    Google Scholar 

  48. S.M. Hunt, M.A. Hamilton, P.S. Stewart: A 3D model of antimicrobial action on biofilms, Water Sci. Technol. 52, 7 (2005) 143–148

    Google Scholar 

  49. H. Topiwala and G. Hamer: Effect of wall growth in steady-state continuous cultures, Biotechnol. Bioeng. 13 (1971) pp 919–922

    Article  Google Scholar 

  50. C.Y. Wen, L.T. Fan: Models for flow systems and chemical reactors. In: Chemical Processing and Engineering, vol. 3 (Marcel Dekker, New York 1975)

    Google Scholar 

  51. J.W.T. Wimpenny, R. Colasanti: A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models, FEMS Microb. Ecol. 22 (1997) pp 1–16

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ballyk, M., Jones, D., Smith, H.L. (2008). The Biofilm Model of Freter: A Review. In: Magal, P., Ruan, S. (eds) Structured Population Models in Biology and Epidemiology. Lecture Notes in Mathematics, vol 1936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78273-5_6

Download citation

Publish with us

Policies and ethics