Skip to main content

Infinite ODE Systems Modeling Size-Structured Metapopulations, Macroparasitic Diseases, and Prion Proliferation

  • Chapter
Structured Population Models in Biology and Epidemiology

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 1936))

  • 2762 Accesses

Infinite systems of ordinary differential equations can describe:

  • Spatially implicit metapopulation models with discrete patch-size structure

  • Host-macroparasite models that distinguish hosts by their parasite loads

  • Prion proliferation models that distinguish protease-resistant protein aggregates by the number of prion units they contain

It is the aim of this chapter to develop a theory for infinite ODE systems in sufficient generality (based on operator semigroups) and, besides well-posedness, to establish conditions for the solution semiflow to be dissipative and have a compact attractor for bounded sets. For metapopulations, we present conditions for uniform persistence on the one hand and prove on the other hand that a metapopulation dies out, if there is no emigration from birth patches or if empty patches are not colonized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.J.S. Allen, An Introduction to Stochastic Processes with Applications to Biology, Pearson Education, Upper Saddle River 2003

    Google Scholar 

  2. F. Arrigoni, Deterministic approximation of a stochastic metapopulation model, Adv. Appl. Prob. 35 (2003) 691–720

    Article  MATH  MathSciNet  Google Scholar 

  3. J.M. Ayerbe Toledano, T. Dominguez Benavides, and G. López Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Birkhäuser, Basel 1997

    MATH  Google Scholar 

  4. J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications, Springer, London 2006

    MATH  Google Scholar 

  5. A.D. Barbour and A. Pugliese, Asymptotic behaviour of a metapopulation model, Ann. Appl. Prob. 15 (2005) 1306–1338

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Born and K. Dietz, Parasite population dynamics within a dynamic host population. Prob. Theor. Rel. Fields 83 (1989) 67–85

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Casagrandi and M. Gatto, A persistence criterion for metapopulations, Theor. Pop. Biol. 61 (2002) 115–125

    Article  MATH  Google Scholar 

  8. S.-N. Chow and J.K. Hale, Methods of Bifurcation Theory, Springer, New York 1982

    MATH  Google Scholar 

  9. Ph. Clément, H.J.A.M. Heijmans, S. Angenent, C.J. van Duijn, and B. de Pagter, One-Parameter Semigroups, North-Holland, Amsterdam 1987

    Google Scholar 

  10. M.D. Clinchy, D.T. Haydon, and A.T. Smith, Pattern does not equal process: what does patch occupancy really tell us about metapopulation dynamics? Am. Nat. 159 (2002) 351–362

    Article  Google Scholar 

  11. E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York 1955

    MATH  Google Scholar 

  12. W. Desch and W. Schappacher, Linearized stability for nonlinear semigroups, Differential Equations in Banach Spaces (A. Favini, E. Obrecht, eds.) 61–73, LNiM 1223, Springer, Berlin Heidelberg New York 1986

    Chapter  Google Scholar 

  13. K. Dietz, Overall population patterns in the transmission cycle of infectious disease agents, Population Biology of Infectious Diseases (R.M. Anderson, R.M. May, eds.), 87–102, Life Sciences Report 25, Springer, Berlin Heidelberg New York 1982

    Google Scholar 

  14. K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, Berlin Heidelberg New York 2000

    MATH  Google Scholar 

  15. H. Engler, J. Prüss, and G.F. Webb, Analysis of a model for the dynamics of prions II, J. Math. Anal. Appl. 324 (2006) 98–117

    Article  MATH  MathSciNet  Google Scholar 

  16. W. Feller, On the integro-differential equations of purely discontinuous Markoff processes, Trans. AMS 48 (1940) 488–515, Errata ibid., 58 (1945) 474

    Google Scholar 

  17. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, 3rd edition, Wiley, New York 1968

    MATH  Google Scholar 

  18. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, Wiley, New York 1965

    Google Scholar 

  19. Z. Feng, L. Rong, and R.K. Swihart, Dynamics of an age-structured metapopulation model, Nat. Res. Mod. 18 (2005) 415–440

    MATH  MathSciNet  Google Scholar 

  20. M. Gilpin and I. Hanski, eds., Metapopulation Dynamics. Empirical and Theoretical Investigations, Academic Press, New York 1991

    Google Scholar 

  21. M.L. Greer, L. Pujo-Menjouet, and G.F. Webb, A mathematical analysis of the dynamics of prion proliferation, J. Theor. Biol. 242 (2006) 598–606

    Article  MathSciNet  Google Scholar 

  22. M.L. Greer, P. van den Driessche, L. Wang, and G.F. Webb, Effects of general incidence and polymer joining on nucleated polymerization in a prion disease model, SIAM J. Appl. Math. 68(1) (2007) 154–170

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Gyllenberg and I. Hanski, Single species metapopulation dynamics: a structured model, Theor. Pop. Biol. 42 (1992) 35–61

    Article  MATH  MathSciNet  Google Scholar 

  24. K.P. Hadeler and K. Dietz, An integral equation for helminthic infections: global existence of solutions, Recent Trends in Mathematics, Reinhardsbrunn 1982 (H. Kurke, J. Mecke, H. Triebel, R. Thiele, eds.) 153–163, Teubner, Leipzig 1982

    Google Scholar 

  25. K.P. Hadeler and K. Dietz, Population dynamics of killing parasites which reproduce in the host, J. Math. Biol. 21 (1984) 45–65

    MATH  MathSciNet  Google Scholar 

  26. J.K. Hale, Asymptotic Behavior of Dissipative Systems. AMS, Providence 1988

    MATH  Google Scholar 

  27. J.K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal. 20 (1989) 388–395

    Article  MATH  MathSciNet  Google Scholar 

  28. I. Hanski and M.E. Gilpin, eds., Metapopulation Biology: Ecology, Genetics, and Evolution, Academic Press, San Diego 1996

    Google Scholar 

  29. E. Hille and R.S. Phillips, Functional Analysis and Semi-Groups, AMS, Providence 1957

    Google Scholar 

  30. T. Kato, On the semi-groups generated by Kolmogoroff’s differential equations, J. Math. Soc. Japan 6 (1954) 12–15

    Article  Google Scholar 

  31. A.N. Kolmogorov, Über die analytischen Methoden der Wahrscheinlichkeitrechnung, Math. Annalen 104 (1931) 415–458

    Article  MATH  Google Scholar 

  32. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin Heidelberg New York 1976

    MATH  Google Scholar 

  33. V.A. Kostizin, Symbiose, parasitisme et évolution (étude mathématique), Herman, Paris 1934, translated in The Golden Age of Theoretical Ecology (F. Scudo, J. Ziegler, eds.), 369–408, Lecture Notes in Biomathematics 22, Springer, Berlin Heidelberg New York 1978

    Google Scholar 

  34. M. Kretzschmar, A renewal equation with a birth-death process as a model for parasitic infections, J. Math. Biol. 27 (1989) 191–221

    Article  MATH  MathSciNet  Google Scholar 

  35. P. Laurençot and C. Walker, Well-posedness for a model of prion proliferation dynamics, J. Evol. Eqn. 7 (2007) 241–264

    Article  MATH  Google Scholar 

  36. R. Levins, Some demographic and genetic consequences of environmental heterogeneity for biological control, Bull. Entom. Soc. Am. 15 (1969) 237–240

    Google Scholar 

  37. R. Levins, Extinction, Some Mathematical Questions in Biology (M.L. Gerstenhaber, ed.) 75–107, Lectures on Mathematics in the Life Sciences 2, AMS 1970

    Google Scholar 

  38. M. Martcheva and H.R. Thieme, A metapopulation model with discrete patch-size structure, Nat. Res. Mod. 18 (2005), 379–413

    MATH  MathSciNet  Google Scholar 

  39. M. Martcheva, H.R. Thieme, and T. Dhirasakdanon, Kolmogorov’s differential equations and positive semigroups on first moment sequence spaces, J. Math. Biol. 53 (2006) 642–671

    Article  MATH  MathSciNet  Google Scholar 

  40. R.H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New York 1976

    MATH  Google Scholar 

  41. J. Masel, V.A.A. Jansen, and M.A. Nowak, Quantifying the kinetic parameters of prion replication, Biophys. Chem. 77 (1999) 139–152

    Article  Google Scholar 

  42. J.A.J. Metz and M. Gyllenberg, How should we define fitness in structured metapopulation models? Including an application to the calculation of evolutionary stable dispersal strategies, Proc. R. Soc. Lond. B 268 (2001) 499–508

    Google Scholar 

  43. A. Moilanen, A.T. Smith, and I. Hanski, Long term dynamics in a metapopulation of the American pika, Am. Nat. 152 (1998) 530–542

    Article  Google Scholar 

  44. J. Nagy, Evolutionary Attracting Dispersal Strategies in Vertebrate Metapopulations, Ph.D. Thesis, Arizona State University, Tempe 1996

    Google Scholar 

  45. M.A. Nowak, D.C. Krakauer, A. Klug, and R.M. May, Prion infection dynamics, Integr Biol 1 (1998) 3–15

    Article  Google Scholar 

  46. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin Heidelberg New York 1982

    Google Scholar 

  47. J. Prüss, L. Pujo-Menjouet, G.F. Webb, and R. Zacher, Analysis of a model for the dynamics of prions, Discr. Cont. Dyn. Syst. B 6 (2006) 215–225

    Google Scholar 

  48. A. Pugliese, Coexistence of macroparasites without direct interactions, Theor. Pop. Biol. 57 (2000) 145–165

    Article  MATH  Google Scholar 

  49. A. Pugliese, Virulence evolution in macro-parasites, Mathematical Approaches for Emerging and Reemerging Infectious Diseases (C. Castillo-Chavez, S. Blower, P. van den Driessche, D. Kirschner, A.-A. Yakubo, eds.) 193–213, Springer, Berlin Heidelberg New York 2002

    Google Scholar 

  50. G.E.H. Reuter, Denumerable Markov processes and the associated contraction semigroups on ℓ, Acta Mathematica 97 (1957), 1–46

    Article  MATH  MathSciNet  Google Scholar 

  51. G.E.H. Reuter and W. Ledermann, On the differential equations for the transition probabilities of Markov processes with enumerable many states, Proc. Camb. Phil. Soc. 49 (1953) 247–262

    Article  MATH  MathSciNet  Google Scholar 

  52. G.R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer, Berlin Heidelberg New York 2002

    MATH  Google Scholar 

  53. G. Simonett and C. Walker, On the solvability of a mathematical model for prion proliferation, J. Math. Anal. Appl. 324 (2006) 580–603

    Article  MATH  MathSciNet  Google Scholar 

  54. A.T. Smith and M.E. Gilpin: Spatially correlated dynamics in a pika metapopulation, [28], 407–428

    Google Scholar 

  55. H.R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differential Integral Equations 3 (1990) 1035–1066

    MATH  MathSciNet  Google Scholar 

  56. H.R. Thieme, Persistence under relaxed point-dissipativity (with applications to an epidemic model), SIAM J. Math. Anal. 24 (1993) 407–435

    Article  MATH  MathSciNet  Google Scholar 

  57. H.R. Thieme, Remarks on resolvent positive operators and their perturbation, Disc. Cont. Dyn. Sys. 4 (1998) 73–90

    Article  MATH  MathSciNet  Google Scholar 

  58. H.R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton 2003

    MATH  Google Scholar 

  59. H.R. Thieme and J. Voigt, Stochastic semigroups: their construction by perturbation and approximation, Positivity IV – Theory and Applications (M.R. Weber, J. Voigt, eds.), 135–146, Technical University of Dresden, Dresden 2006

    Google Scholar 

  60. J. Voigt, On substochastic C 0-semigroups and their generators, Transp. Theory Stat. Phys. 16 (1987) 453–466

    Article  MATH  MathSciNet  Google Scholar 

  61. C. Walker, Prion proliferation with unbounded polymerization rates, Electron. J. Diff. Equations, Conference 15 (2007) 387–397

    Google Scholar 

  62. X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, Berlin Heidelberg New York 2003

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martcheva, M., Thieme, H.R. (2008). Infinite ODE Systems Modeling Size-Structured Metapopulations, Macroparasitic Diseases, and Prion Proliferation. In: Magal, P., Ruan, S. (eds) Structured Population Models in Biology and Epidemiology. Lecture Notes in Mathematics, vol 1936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78273-5_2

Download citation

Publish with us

Policies and ethics