Skip to main content

Spiral Waves and Dissipative Solitons in Weakly Excitable Media

  • Chapter
  • First Online:
  • 1769 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 751))

Abstract

Spiral waves are among the most prominent examples of spatio-temporal patterns in various excitable media, including heart muscle, the retina of the eye, social amoeba colonies and the chemical Belousov–Zhabotinsky reaction. Recent studies have shown that, in addition to spiral waves, there is another possible waveform, viz. a propagating wave segment that is stationary in size and shape. Such localized spatio-temporal structures in nonlinear dissipative media exhibit all the basic features of dissipative solitons. In this chapter, a free boundary model is presented to describe the shape and velocity of the wave segments. It turns out that a generalization of this model allows us to determine the shape and angular velocity of a spiral wave that is rotating rigidly in a medium of low excitability. Thus, our study demonstrates that dissipative solitons (propagating wave segments) and spiral waves are closely connected to each other and that they represent different solutions in the framework of a common theoretical model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Krinsky and H. Swinney (eds), Wave and Patterns in Biological and Chemical Excitable Media, (North-Holland, Amsterdam, 1991).

    Google Scholar 

  2. M.C. Cross and P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).

    Article  ADS  Google Scholar 

  3. R. Kapral and K. Showalter (eds.), Chemical Waves and Patterns, (Kluwer, Dordrecht, 1995).

    Google Scholar 

  4. A.T. Winfree, The Geometry of Biological Time (Springer, Berlin, Heidelberg, 2000).

    Google Scholar 

  5. G. Gerisch, Naturwissenschaften 58, 430 (1971).

    Article  ADS  Google Scholar 

  6. A.T. Winfree, Science 175, 634 (1972).

    Article  ADS  Google Scholar 

  7. A.M. Zhabotinsky and A.N. Zaikin, J. Theor. Biol. 40, 45 (1973).

    Article  Google Scholar 

  8. M.A. Allessie, F.I.M. Bonke, and F.J.G. Schopman, Circ. Res. 33, 54 (1973).

    Google Scholar 

  9. J.M. Davidenko, A.V. Pertsov, R. Salomonsz, W. Baxter, and J. Jalife, Nature 355, 349 (1992).

    Article  ADS  Google Scholar 

  10. N.A. Gorelova and J. Bures, J. Neurobiol. 14, 353 (1983).

    Article  Google Scholar 

  11. S. Jakubith, H.H. Rotermund, W. Engel, A. von Oertzen, and G. Ertl, Phys. Rev. Lett. 65, 3013 (1990).

    Article  ADS  Google Scholar 

  12. V. Gáspár, G. Bazsa, and M.T. Beck, Z. Phys. Chem. (Leipzig), 264, 43 (1983).

    Google Scholar 

  13. L. Kuhnert, Naturwissenschaften 73, 96 (1986).

    Article  ADS  Google Scholar 

  14. O. Kheowan, V. Gáspár, V.S. Zykov, and S.C. Müller, Phys. Chem. Chem. Phys. 3, 4747 (2001).

    Article  Google Scholar 

  15. A.S. Mikhailov and V.S. Zykov, Physica D 52, 379 (1991).

    Article  ADS  Google Scholar 

  16. E. Mihaliuk, T. Sakurai, F. Chirila, and K. Showalter, Faraday Discuss. 120, 383 (2001).

    Article  ADS  Google Scholar 

  17. E. Mihaliuk, T. Sakurai, F. Chirila, and K. Showalter, Phys. Rev. E 65, 065602(R) (2002).

    Article  ADS  Google Scholar 

  18. T. Sakurai, E. Mihaliuk, F. Chirila, and K. Showalter, Science 296, 2009 (2002).

    Article  ADS  Google Scholar 

  19. F. Schweitzer, W. Ebeling, and B. Tilch, Phys. Rev. Lett. 80, 5044 (1998).

    Article  ADS  Google Scholar 

  20. U. Erdmann, W. Ebeling, L. Schimansky-Geier, and F. Schweitzer, Europhys. J. B 15105 (2000).

    ADS  Google Scholar 

  21. K. Krischer and A. Mikhailov, Phys. Rev. Lett. 73, 3165 (1994).

    Article  ADS  Google Scholar 

  22. C.P. Schenk, M. Or-Guil, M. Bode, and H.-G. Purwins, Phys. Rev. Lett. 78, 3781 (1997).

    Article  ADS  Google Scholar 

  23. M. Gaa and E. Schöll, Phys. Rev. B 54, 16733 (1996).

    Article  ADS  Google Scholar 

  24. I. Brauer, M. Bode, E. Ammelt, and H.-G. Purwins, Phys. Rev. Lett. 84, 4104 (2000).

    Article  ADS  Google Scholar 

  25. C. Strümpel, H.-G. Purwins, and Yu.A. Astrov, Phys. Rev. E 63, 026409 (2001).

    Article  ADS  Google Scholar 

  26. M. Bertram, C. Beta, M. Pollmann, A.S. Mikhailov, H.H. Rotermund, and G. Ertl, Phys. Rev. E 67, 036208 (2003).

    Article  ADS  Google Scholar 

  27. P.C. Fife, J. Stat. Phys. 39, 687 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  28. J.J. Tyson and J.P. Keener, Physica D 32, 327 (1988).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. A. Bernoff, Physica D 53, 125 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. P. Pelce and J. Sun, Physica D 48, 353 (1991).

    Article  MATH  ADS  Google Scholar 

  31. A. Karma, Phys. Rev. Lett. 66, 2274 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. D. Kessler and R. Kupferman, Physica D 97, 509 (1996).

    Article  Google Scholar 

  33. V. Hakim and A. Karma, Phys. Rev. E, 60, 5073 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  34. D. Margerit and D. Barkley, Chaos 12, 636 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. V.S. Zykov and K. Showalter, Phys. Rev. Lett. 94, 068302-1 (2005).

    Article  ADS  Google Scholar 

  36. R. FitzHugh, Biophys. 1, 445 (1961)

    Article  Google Scholar 

  37. J. Nagumo, S. Arimoto, and S. Yoshizawa, Proc. IRE 50, 2061 (1962)

    Google Scholar 

  38. A.T. Winfree, Chaos 1, 303 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  39. V.S. Zykov, Simulation of Wave Processes in Excitable Media, (Manchester Univ. Press, Manchester, 1987).

    MATH  Google Scholar 

  40. F.B. Gul’ko and A.A. Petrov, Biofizika 17, 261 (1972).

    Google Scholar 

  41. O. Steinbock, V.S. Zykov, and S.C. Müller, Phys. Rev. E 48, 3295 (1993).

    Article  ADS  Google Scholar 

  42. V.S. Zykov, A.S. Mikhailov, and S.C. Müller, Phys. Rev. Lett. 78, 3398 (1997).

    Article  ADS  Google Scholar 

  43. M. Bär, A.K. Bangia, and I.G. Kevrekidis, Phys. Rev. E 67, 056126 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  44. V.S. Zykov, Biophysics 31, 940 (1986).

    Google Scholar 

  45. A.G. Merzhanov, A.K. Filonenko, and I.P. Borovinskaya, Dokl. Akad. Nauk SSSR 208, 892 (1973).

    Google Scholar 

  46. A. Bayliss, B.J. Matkowsky, and A.P. Aldushin, Physica D 166, 104 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V.S. Zykov .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zykov, V. (2008). Spiral Waves and Dissipative Solitons in Weakly Excitable Media. In: Dissipative Solitons: From Optics to Biology and Medicine. Lecture Notes in Physics, vol 751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78217-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78217-9_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78216-2

  • Online ISBN: 978-3-540-78217-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics