Skip to main content

Wave Phenomena in Neuronal Networks

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 751))

Abstract

We study traveling wave solutions of a system of integro-differential equations which describe the activity of large-scale networks of excitatory neurons on spatially extended domains. The independent variables are the activity level, u, of a population of excitatory neurons which have long-range connections and a recovery variable, v. There is a critical value of the parameter β (β* > 0) that appears in the equation for v, at which the eigenvalues of the linearization of the system around the rest state (u,v)=(0,0) change from real to complex. In contrast to previous studies which analyzed properties of traveling waves when the eigenvalues are real, we examine the range β > β*, where the eigenvalues are complex. In this case, our numerical experiments indicate that there is a range of parameters over which families of wave fronts and solitary and multi-bump waves can coexist as stable solutions. In two-space dimensions, we show how single-bump, double-bump and multi-ring waves form in response to a Gaussian-shaped stimulus. We also show how a stable, one-armed rotating spiral wave can form and fill the entire domain. All of these phenomena can be initiated at any point in the medium, as they are not driven by an underlying time-dependent periodic pacemaker, and they do not depend on the presence of a persistent external input.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Amari, Biol. Cybern. 27 77–87 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  2. E. Brown, J. Gao, P. Holmes, R. Bogacz, M. Gilzenrat, and J.D. Cohen, Int. J. Bif. Chaos 15, 803–826 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Bressloff and S.E. Folias, SIAM J. Appl. Math. 65, 131–151 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  4. B.D. Burns, J. Physiol. 111, 50–68 (1950).

    Google Scholar 

  5. B.D. Burns, J. Physiol. 112, 156–175 (1951).

    Google Scholar 

  6. B.D. Burns and B. Grafstein, J. Physiol. 118, 412–433 (1952).

    Google Scholar 

  7. G. Buzsaki and A. Draguhn, Science 304, 1926–1929 (2004).

    Article  ADS  Google Scholar 

  8. R.D. Chervin, P.A. Pierce, and B.W. Connors, J. Neurophys. 60, 1695–1713 (1988).

    Google Scholar 

  9. P.H. Chu, J. Milton, and J.D. Cowan, Inter. J. Bif. Chaos 4, 237–243 (1992).

    Article  Google Scholar 

  10. B.W. Connors and Y. Amati, in Epilepsy: Models, Mechanisms and Concepts, edited by P.A. Schwartkroin, (Cambridge University Press, U.K. 1993), pp. 388–423.

    Google Scholar 

  11. S. Coombes, Byol. Cybern. 93, 91–108 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Coombes and M.R. Owen, SIAM J. Dyn. Sys. 34, 574–600 (2004).

    Article  MathSciNet  Google Scholar 

  13. S. Coombes and M.R. Owen, Phys. Rev. Lett. 94, 148102 (2005).

    Article  ADS  Google Scholar 

  14. J.C. Eccles, The Understanding of the Brain, McGraw-Hill, New York 1973),pp. 2003, 1627–1647.

    Google Scholar 

  15. G.B. Ermentrout and J.B. McLeod, Proc. Roy. Soc. Edin. Sect. A 123, 461–478 (1993).

    MATH  MathSciNet  Google Scholar 

  16. I. Ferezou, S. Bolea, and C. Petersen, Neuron 50, 617–629 (2006).

    Article  Google Scholar 

  17. S. Folias and P. Bressloff, SIAM J. Appl. Math. 65, 131–151 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  18. S. Folias and P. Bressloff, Phys. Rev. Lett. 95, 208107 (2004).

    Article  ADS  Google Scholar 

  19. S. Folias and P. Bressloff, SIAM J. Dyn. Sys. 3, 378–407 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  20. D. Golomb and Y. Amati, J. Neurophysiol. 79(1–2), 1199–1211 (1997).

    Google Scholar 

  21. Y. Guo and C. Chow, SIAM J. Dyn. Sys. 4, 217–248 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  22. Y. Guo and C. Chow, SIAM J. Dyn. Sys. 4, 249–281 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Glanz, Science 277, 1758–1760 (1997).

    Article  Google Scholar 

  24. D. Golomb, 79, 1–12, 1335–1348 (1998).

    Google Scholar 

  25. D. Golomb and Y. Amati, 78, 1199–1211 (1997).

    Google Scholar 

  26. B. Gutkin, D. Pinto, and B. Ermentrout, J. Physiol. Paris 97 (2–3), 209–219 (2003).

    Article  Google Scholar 

  27. S.P. Hastings, SIAM J. Appl. Math. 42, 247–260 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  28. J.A. Hobson, Dreaming: An Introduction to the Science of Sleep, (Oxford University Press, New York, 2004).

    Google Scholar 

  29. J.A. Hobson and R.W. McCarley, Amer. J. Psychiatry 134, 1335–1348 (1977).

    Google Scholar 

  30. X. Huang, W.C. Troy, Q. Yang, H. Ma, C. Laing, S. Schiff, and J.Y. Wu, J. Neurosci. 24, 9897–9902 (2004).

    Article  Google Scholar 

  31. M.A.P. Idiart and L.F. Abbott, Network 4, 285–294 (1993).

    Article  MATH  Google Scholar 

  32. D. Kleinfield, K.R. Delaney, M.S. Fee, J.A. Flores, D.W. Tank, and A. Galperin, J. Neurophys. 72, 1402–1419 (1994).

    Google Scholar 

  33. E. Krisner, J. Math. Anal. Appl. 291, 165–179 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  34. C. Laing and W.C. Troy, SIAM J. Appl. Dyn. Sys. 2, 487–516 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Y.W. Lam, L.B. Cohen, M. Wachowiak, and M.R. Zochowski, J. Neurosci. 20, 749–762 (2000).

    Google Scholar 

  36. R. Miles, R.D. Traub, and R.K. Wong, J. Neurophys. 60, 1481–1496 (1988).

    Google Scholar 

  37. J. Milton, T. Mundel, U. an der Heiden, J. Sprire, and J. Cowan, Handbook of Brain Theory and Neural Networks, (MIT Press, Cambridge, 1994), pp. 994–996.

    MATH  Google Scholar 

  38. J. Milton and P. Jung, Epilepsy as a Dynamic Disease, (Biological and Medical Physics Series, Springer, 2003).

    Google Scholar 

  39. D. Pinto and B. Ermentrout, SIAM J. Appl. Math. 62, 206–225 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  40. D. Pinto and B. Ermentrout, SIAM J. Appl. Math. 62, 226–243 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  41. D. Pinto, R. Jackson, and G. Wayne, SIAM J. Appl. Dyn. Sys. 4, 954–984 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. D.J. Pinto, S.A. Patrick, H.W. Huang, and B. Connors, J. Neurosci. 25, 8131–8140 (2005).

    Article  Google Scholar 

  43. J.C. Prechtl, L.B. Cohen, B. Pasaram, P.P. Mitra, and D. Kleinfeld, Proc. Natl. Acad. Sci. USA 94, 7621–7626 (1997).

    Article  ADS  Google Scholar 

  44. D. Pinto and W.C. Troy, In preparation (2005).

    Google Scholar 

  45. K. Richardson, S.J. Schiff, and B.J. Gluckman, Phys. Rev. Lett. 94, 028103 (2005).

    Article  ADS  Google Scholar 

  46. A. Rosenbluth and W.B. Cannon, A. J. Physiol. 135, 690–741 (1942).

    Google Scholar 

  47. B. Schechter, Science 274 (5286), 339 (1996).

    Google Scholar 

  48. J. Schofflen, R. OOstenveld, and P. Fries, Science 308, 111–113 (2003).

    Article  ADS  Google Scholar 

  49. I.A. Shevlev, E.N. Tsicalov, A.M. Gorbach, K.P. Budko, and G.A. Sharaev, J. Neurosci. Methods 46, 49–57 (1992).

    Article  Google Scholar 

  50. W.C. Troy and V. Shusterman, SIAM J. Appl. Dyn. Sys. (2007).

    Google Scholar 

  51. H.R. Wilson and J.D. Cowan, Kybernetik 13, 55–80 (1973).

    Article  Google Scholar 

  52. J.Y. Wu, L. Guan, and Y. Tsau, J. Neurosci. 19, 5005–5015 (1999).

    Google Scholar 

  53. L. Zhang, Diff. Integral Eqs. 16, 513–536 (2003).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.C. Troy .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Troy, W. (2008). Wave Phenomena in Neuronal Networks. In: Dissipative Solitons: From Optics to Biology and Medicine. Lecture Notes in Physics, vol 751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78217-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78217-9_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78216-2

  • Online ISBN: 978-3-540-78217-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics