Skip to main content

Three Sources and Three Component Parts of the Concept of Dissipative Solitons

  • Chapter
  • First Online:
Dissipative Solitons: From Optics to Biology and Medicine

Part of the book series: Lecture Notes in Physics ((LNP,volume 751))

Abstract

We explain the notion of dissipative solitons within a historical perspective. We show that the ideas of the theory of dissipative solitons emerge from several fields, including classical soliton theory, nonlinear dynamics, with its theory of bifurcations, and Prigogine’s concept of self-organization. A new notion, emerging from this three-part foundation, allows us to build the novel concept of the dissipative soliton. We also show that reductions to lower dimensional systems have to be done carefully and should always include a comparison of the results with numerical simulations of the original equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Akhmediev and A. Ankiewicz, Solitons around us: Integrable, Hamiltonian and dissipative systems, in Optical Solitons: Theoretical and Experimental Challenges, Edited by K. Porsezian and V.C. Kurakose, (Springer, Berlin-Heidelberg, 2003), pp. 105–126.

    Google Scholar 

  2. N. Akhmediev and A. Ankiewicz, Solitons of the complex Ginzburg–Landau equation, in Spatial Solitons 1, Edited by S. Trillo and W.E. Toruellas, (Springer, Berlin-Heidelberg, 2001), pp. 311–342.

    Google Scholar 

  3. N. Akhmediev, General theory of solitons, in Soliton-Driven Photonics, edited by A.D. Boardman and A.P. Sukhorukov, (Kluver Academic Publishers, Netherlands, 2001), pp. 371–395.

    Google Scholar 

  4. N.J. Zabusky and M.D. Kruskal, Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15, 240–243 (1965).

    Article  ADS  MATH  Google Scholar 

  5. J.S. Russell, Report of the fourteenth meeting of the British Association for the Advancement of Science, York, 1844 (London 1845), pp. 311–390, Plates XLVII-LVII.

    Google Scholar 

  6. C.S. Gardner, J.M. Greene, M.D. Kruskal, and K.M. Miura, Method for solving the Korteweg–de Vries equation, Phys. Rev. Lett. 19, 1095–1097 (1967).

    Article  MATH  ADS  Google Scholar 

  7. V.E. Zakharov and A.B. Shabat, Exact theory of two dimensional self focusing and one dimensional self modulation of nonlinear waves in nonlinear media, Sov. Phys. JETP, 34, 62–69 (1971). Original (in Russian): Zh. Eksp. Teor. Fiz., 61, 118.

    ADS  MathSciNet  Google Scholar 

  8. M.J. Ablowitz and P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Notes Series 149, (Cambridge University Press, Cambridge, (1991).

    Book  Google Scholar 

  9. G.P. Agrawal, Nonlinear Fiber Optics, 2nd edn, (Academic Press Inc., San Diego, CA, 1995).

    Google Scholar 

  10. E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. Botineau, Observation of dissipative superluminous solitons in a Brillouin fiber ring laser, Phys. Rev. Lett. 66, 1454 (1991).

    Article  ADS  Google Scholar 

  11. C.I. Christov and M.G. Velarde, Dissipative solitons, Physica D, 86, 323–347 (1995).

    Google Scholar 

  12. Akhmediev, N., Ankiewicz, A. (eds.): Dissipative Solitons. Lect. Notes Phys. V. 661. Springer, Heidelberg (2005).

    Google Scholar 

  13. B.S. Kerner and V.V. Osipov, Autosolitons: A New Approach to Problems of Self-Organization and Turbulence, Fundamental Theories of Physics, 61, (Kluwer Academic Publishers, Dordrecht, 1996).

    Google Scholar 

  14. H.-G. Purwins, H.U. Bödeker and A.W. Liehr, Dissipative Solitons in Reaction-Diffusion Systems, Chapter 10 in the book [12].

    Google Scholar 

  15. H. Haken, Synergetics, (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  16. N. Bekki and K. Nozaki, Formations of spatial patterns and holes in the generalized Ginzburg–Landau equation, Phys. Lett. A, 110, 133–135 (1985).

    Article  ADS  Google Scholar 

  17. W. Van Saarloos and P.C. Hohenberg, Fronts, pulses, sources and sinks in generalized complex Ginzburg–Landau equations, Physica D 56, 303–367 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. N. Akhmediev and V. Afanasjev, Novel arbitrary-amplitude soliton solutions of the cubic–quintic complex Ginzburg–Landau equation, Phys. Rev. Lett. 75, 2320–2323 (1995).

    Article  ADS  Google Scholar 

  19. V.B. Taranenko, K. Staliunas, and C.O. Weiss, Spatial soliton laser: Localized structures in a laser with a saturable absorber in a self-imaging resonator, Phys. Rev. A 56, 1582–1591 (1997).

    Article  ADS  Google Scholar 

  20. W.J. Firth and A.J. Scroggie, Optical bullet holes: Robust controllable localized states of a nonlinear cavity, Phys. Rev. Lett. 76, 1623–1626 (1996).

    Article  ADS  Google Scholar 

  21. N.A. Kaliteevstii, N.N. Rozanov, and S. Fedorov, V. Formation of laser bullets, Opt. Spectrosc., 85, 533–534 (1998).

    Google Scholar 

  22. D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B.A. Malomed, Stability of dissipative optical solitons in the three–dimensional cubic–quintic Ginzburg-Landau equation, Phys. Rev. A 75, 033811 (2007).

    Article  ADS  Google Scholar 

  23. J.M. Soto-Crespo, N. Akhmediev, and Ph. Grelu, Optical bullets and double bullet complexes in dissipative systems, Phys. Rev. E 74, 046612 (2006).

    Article  ADS  Google Scholar 

  24. D. Michaelis, U. Peschel, and F. Lederer, Oscillating dark cavity solitons, Opt. Lett. 23, 1814–1816 (1998).

    Article  ADS  Google Scholar 

  25. N. Akhmediev and A. Ankiewicz, Dissipative Solitons in the Complex Ginzburg–Landau and Swift-Hohenberg Equations, Chapter in Ref.[12].

    Google Scholar 

  26. I.S. Aranson and L. Kramer, The world of the complex Ginzburg–Landau equation, Rev. Mod. Phys. 74, 100 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  27. J.M. Soto-Crespo, N. Akhmediev, and V.V. Afanasjev, Stability of the pulselike solutions of the quintic complex Ginzburg–Landau equation, JOSA B 13, No 7, 1439–1449, (1996).

    Google Scholar 

  28. A. Ankiewicz, N. Devine, N. Akhmediev, and J.M. Soto-Crespo, Dissipative solitons and antisolitons, Phys. Lett. A 368, September (2007).

    Google Scholar 

  29. N. Akhmediev, J.M. Soto-Crespo, and Ph. Grelu, Vibrating and shaking soliton pairs in dissipative systems, Phys. Lett. A 364, 413–416 (2007).

    Article  ADS  Google Scholar 

  30. N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear Pulses and beams, (Chapman and Hall, London, 1997).

    Google Scholar 

  31. N. Akhmediev, J.M. Soto-Crespo, and G. Town, Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: CGLE approach, Phys. Rev. E 63, 056602 (2001).

    ADS  Google Scholar 

  32. W. Chang, A. Ankiewicz, N. Akhmediev, and J.M. Soto-Crespo, Creeping solitons in dissipative systems and their bifurctaions, Phys. Rev. E 76, 016607 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  33. A.I. Maimistov, Evolution of solitary waves which are approximately solitons of a nonlinear Schrödinger equation, J. Exp. Theor. Phys. 77, 727 (1993) [Zh. Eksp. Teor. Fiz. 104, 3620 (1993), in Russian].

    MathSciNet  ADS  Google Scholar 

  34. E.N. Tsoy and C.M. de Sterke, Propagation of nonlinear pulses in chirped fiber gratings, Phys. Rev. E 62, 2882 (2000).

    Article  ADS  Google Scholar 

  35. F.Kh. Abdullaev, D.V. Navotny, and B.B. Baizakov, Optical pulse propagation in fibers with random dispersion, Physica D 192, 83 (2004).

    Article  MATH  ADS  Google Scholar 

  36. M.N. Zhuravlev and N.V. Ostrovskaya, Dynamics of NLS solitons described by the cubic–quintic Ginzburg–Landau equation, J. Exper. Theor. Phys. 99, 427 (2004) [ Zh. Eksp. Teor. Fiz. 126, 483 (2004), in Russian].

    Article  ADS  Google Scholar 

  37. E. Tsoy and N. Akhmediev, Bifurcations from stationary to pulsating solitons in the cubic–quintic complex Ginzburg–Landau equation, Phys. Lett. A 343, 417–422 (2005).

    Article  MATH  ADS  Google Scholar 

  38. E. Tsoy, A. Ankiewicz, and N. Akhmediev, Dynamical models for dissipative localized waves of the complex Ginzburg–Landau equation, Phys. Rev. E 73, 036621 (2006).

    Article  ADS  Google Scholar 

  39. N. Akhmediev, A. Ankiewicz and J.M. Soto-Crespo, Stable soliton pairs in optical transmission lines and fiber lasers, J. Opt. Soc. Am. B 15, 515 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  40. J.M. Soto-Crespo, M. Grapinet, Ph. Grelu, and N. Akhmediev, Bifurcations and multiple period soliton pulsations in a passively mode-locked fiber laser, Phys. Rev. E 70, 066612 (2004).

    Article  ADS  Google Scholar 

  41. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, (Springer-Verlag, New York, 1983).

    MATH  Google Scholar 

  42. J. Satsuma and N. Yajima, Initial value-problems of one-dimensional self-modulation of nonlinear waves in dispersive media, Progr. Theor. Phys. Suppl. 55, 284 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  43. W. Chang, A. Ankiewicz, N. Akhmediev, and J.M. Soto-Crespo, Creeping solitons of the complex Ginzburg–Landau equation with a low-dimensional dynamical system model, Phys. Lett. A362, 31–36 (2007).

    Article  ADS  MATH  Google Scholar 

  44. J.M. Soto-Crespo, N. Akhmediev and A. Ankiewicz, Pulsating, creeping, and erupting solitons in dissipative systems, Phys. Rev. Lett. 85, 2937–2940, (2000).

    Article  ADS  Google Scholar 

  45. H.P. Tian, Z.H. Li, J.P. Tian, G.S. Zhou and J. Zi, Effect of nonlinear gradient terms on pulsating, erupting and creeping solitons, Appl. Phys. B 78, 199–204 (2004).

    Article  ADS  Google Scholar 

  46. N. Akhmediev and J.M. Soto–Crespo, Exploding solitons and Shil’nikov’s theorem, Phys. Lett. A 317, 287–292 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. A. Fernandez, T. Fuji, A. Poppe, A. Frbach, F. Krausz, and A. Apolonski, Chirped-pulse oscillators: A route to high-power femtosecond pulses without external amplification, Opt. Lett. 29, 1366–1368 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Akhmediev .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Akhmediev, N., Ankiewicz, A. (2008). Three Sources and Three Component Parts of the Concept of Dissipative Solitons. In: Dissipative Solitons: From Optics to Biology and Medicine. Lecture Notes in Physics, vol 751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78217-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78217-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78216-2

  • Online ISBN: 978-3-540-78217-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics