Skip to main content

Visual and Quantitative Characterization of Ferroelectric Crystals and Related Domain Engineering Processes by Interferometric Techniques

  • Chapter
Ferroelectric Crystals for Photonic Applications

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 91))

Abstract

Nonlinear crystals are, nowadays, key devices to build coherent sources emitting radiation from the UV to the IR spectral range. Applications of nonlinear optics are primarily based on frequency conversion, through harmonic generation or sum and difference frequency mixing. These nonlinear frequency conversion techniques make possible coherent light sources in spectral regions where laser sources are limited, or do not exist. Light sources based on nonlinear crystals, like optical parametric oscillators as well as harmonic and difference frequency generators, are finding increasing application in high sensitivity spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Simon, F.K. Tittel, in Atomic, Molecular and Optical Physics: Electromagnetic Radiation, vol. 29C, ed. by F.B. Dunning, R.G. Hulet (Academic Press, New York, 1997), p. 231

    Chapter  Google Scholar 

  2. D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J. Mitchell, L. Hollberg, Opt. Lett. 25, 350 (2000)

    Article  ADS  Google Scholar 

  3. N. Picqué, P. Cancio, G. Giusfredi, P. De Natale, Opt. Soc. Am. B 5, 692 (2001)

    Article  ADS  Google Scholar 

  4. K. Fradkin, A. Arie, P. Urenski, G. Rosenman, Opt. Lett. 25, 743 (2000)

    Article  ADS  Google Scholar 

  5. R.G. Hunsperger, Integrated Optics, 4th edn. (Springer, Berlin, 1995)

    Google Scholar 

  6. S. Breer, K. Buse, Appl. Phys. B: Lasers Opt. 66, 339 (1998)

    Article  ADS  Google Scholar 

  7. S. Breer, H. Vogt, I. Nee, K. Buse, Electron. Lett. 34, 2419 (1998)

    Article  Google Scholar 

  8. M.M. Fejer, G.A. Magel, D.H. Jundt, R.L. Byer, IEEE J. Quantum Electron. 28, 263 (1992)

    Article  Google Scholar 

  9. C. Becker, A. Greiner, T. Oesselke, A. Pape, W. Sohler, H. Suche, Opt. Lett. 23, 1194 (1998)

    Article  ADS  Google Scholar 

  10. B. Andreas, K. Peithmann, K. Buse, Modification of the refractive index of lithium niobate crystals by transmission of high energy 4He2+ and D+ particles. Appl. Phys 84, 3813–3815 (2004)

    ADS  Google Scholar 

  11. D.-C. Su, C.-C. Hsu, Method for determining the optical axis and (n e, n o) of a birefringent crystal. Appl. Opt. 41, 3936–3940 (2002)

    Article  ADS  Google Scholar 

  12. Y.-C. Huang, C. Chou, M. Chang, Direct measurement o refractive indices (n e, n o) of a linear birefringent retardation plate. Opt. Commun. 133, 11–16 (1997)

    Article  Google Scholar 

  13. R.P. Shukla, G.M. Perera, M.C. George, P. Venkateswarlu, Measurement of birefringence of optical materials using a wedged plate interferometer. Opt. Commun. 78, 7–12 (1990)

    Article  ADS  Google Scholar 

  14. M.-H. Chiu, C.-D. Chen, D.-C. Su, Method for determining the fast axis and phase retardation of a wave plate. J.  Opt. Soc. Am. A 13, 1924–1929 (1996)

    Article  ADS  Google Scholar 

  15. G.E. Jellison Jr., F.A. Modine, L.A. Boatner, Measurementof the optical functions of uniaxial materials by twomodulator generalized ellipsometry: rutile (TiO2). Opt. Lett. 22, 1808–1810 (1997)

    Article  ADS  Google Scholar 

  16. J.D. Hecht, A. Eifler, V. Riede, M. Schubert, G. Krauss, V. Krämer, Birefringence and reflectivity of single-crystal CdAl2Se2 by generalized ellipsometry. Phys. Rev. B 57, 7037–7042 (1998)

    Article  ADS  Google Scholar 

  17. D.F. Heller, O. Kafri, J. Krasinnski, Appl. Opt. 33, 3037 (1985)

    Article  ADS  Google Scholar 

  18. J.C. Bhattacharya, Appl. Opt. 40, 1658 (2001)

    Article  ADS  Google Scholar 

  19. P.S.K. Lee, J.B. Pors, M.P. van Exter, J.P. Woerdeman, Simple method for accurate haracterization of birefringent crystals. Appl. Opt. 44, 866–870 (2005)

    Article  ADS  Google Scholar 

  20. S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, S. Grilli, G. Pierattini, A Mach–Zehnder interferometer system for measuring the refractive indices of uniaxial crystals. Opt. Commun. 202, 9–15 (2002)

    Article  ADS  Google Scholar 

  21. L.H. Takeda, S. Kobayashy, J.  Opt. Soc. Am. 72, 156 (1982)

    Article  ADS  Google Scholar 

  22. T. Fukano, L. Yamaguchi, Simultaneous measurements of thickness and refractive indices of multiple layers bu low coherence confocal coherence interference microscope. Opt. Lett. 21, 1942–1944 (1986)

    Article  ADS  Google Scholar 

  23. G.J. Tearney, M.E. Brezinski, J.F. Southern, B.E. Bouma, M.R. Hee, G. Fujimoto, Determination of the refractive index of light scattering human tissue by optical coherence tomography. Opt. Lett. 20, 2258–2260 (1995)

    Article  ADS  Google Scholar 

  24. M. Haruna, M. Ohmi, Y. Mitsuyama, H. Tajiri, H. Maruyama, M. Hashimoto, Simultaneous measurement of the phase and group indices and the thickness of transparent plates by low coherence interferometry. Opt. Lett. 23, 966–968 (1998)

    Article  ADS  Google Scholar 

  25. J.C. Martinez-Anton, E. Bernabeu, Simultaneous determination of film thickness and refractive index by interferential spectrogoniometry. Opt. Commun. 132, 312–328 (1996)

    Article  ADS  Google Scholar 

  26. G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, Method for measuring the refractive index and the thickness of transparent plates with a lateral-shear, wavelength-scanning interferometer. Appl. Opt. 42, 3882–3887 (2003)

    Article  ADS  Google Scholar 

  27. L. Byer, Nonlinear optics and solid-state lasers: 2000. IEEE J. Select. Top. Quantum Electron. 6, 911–930 (2000)

    Article  Google Scholar 

  28. N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson, D.C. Hanna, Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal. Phys. Rev. Lett. 84, 4345–4348 (2000)

    Article  ADS  Google Scholar 

  29. S.J. Holmgren, V. Pasiskevicius, S. Wang, F. Laurell, Three-dimensional characterization of the effective second-order nonlinearity in periodically poled crystals. Opt. Lett. 28, 1555–1557 (2003)

    Article  ADS  Google Scholar 

  30. M. Yamada, N. Nada, M. Saitoh, K. Watanabe, First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett. 62, 435–436 (1993)

    Article  ADS  Google Scholar 

  31. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, P. De Natale, M. Chiarini, Investigation on reversed domain structures in lithium niobate crystals patterned by interference lithography. Opt. Express 11, 392–405 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-392

    Article  ADS  Google Scholar 

  32. M.J. Missey, S. Russell, V. Dominic, R.G. Batchko, K.L. Schepler, Real-time visualization of domain formation in periodically poled lithium niobate. Opt. Express 6, 186–195 (2000)

    Article  ADS  Google Scholar 

  33. V. Gopalan, T.E. Mitchell, Wall velocities, switching times, and the stabilization mechanism of 180○ domains in congruent LiTaO3 crystals. J.  Appl. Phys. 83, 941–954 (1998)

    Article  ADS  Google Scholar 

  34. K. Terabe, M. Nakamura, S. Takekawa, K. Kitamura, S. Higuchi, Y. Gotoh, Y. Cho, Microscale to nanoscale ferroelectric domain and surface engineering of a near-stoichiometric LiNbO3 crystal. Appl. Phys. Lett. 82(3), 433–435 (2003)

    Article  ADS  Google Scholar 

  35. G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, M. Molotskii, Submicron ferroelectric domain structures tailored by high voltage scanning probe microscopy. Appl. Phys. Lett. 82(1), 103–105 (2003)

    Article  ADS  Google Scholar 

  36. M. Mohageg, D. Strekalov, A. Savchenkov, A. Matsko, V. Ilchenko, L. Maleki, Calligraphic poling of lithium niobate. Opt. Express 13, 3408–3419 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3408

    Article  ADS  Google Scholar 

  37. K. Nassau, H.J. Levinstein, G.M. Loiacono, Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching. J.  Phys. Chem. Solids 27, 983–988 (1966)

    Article  ADS  Google Scholar 

  38. V. Gopalan, M.C. Gupta, Origin of internal field and visualization of 180○ domains in congruent LiTaO3 crystals. J.  Appl. Phys. 80, 6099–6106 (1996)

    Article  ADS  Google Scholar 

  39. M. Flörsheimer, R. Paschotta, U. Kubitscheck, Ch. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, H. Fuchs, Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions. Appl. Phys. B 67, 593–599 (1998)

    Article  ADS  Google Scholar 

  40. T.J. Yang, V. Gopalan, P.J. Swart, U. Mohideen, Direct observation of pinning and bowing of a single ferroelectric domain wall. Phys. Rev. Lett. 82, 4106–4109 (1999)

    Article  ADS  Google Scholar 

  41. J. Wittborn, C. Canalias, K.V. Rao, R. Clemens, H. Karlsson, F. Laurell, Nanoscale imaging of domains and domain walls in periodically poled ferroelectrics using atomic force microscopy. Appl. Phys. Lett. 80, 1622–1624 (2002)

    Article  ADS  Google Scholar 

  42. M.C. Wengler, M. Müller, E. Soergel, K. Buse, Poling dynamics of lithium niobate crystals. Appl. Phys. B 76, 393–396 (2003)

    Article  ADS  Google Scholar 

  43. V. Gopalan, S.S.A. Gerstl, A. Itagi, T.E. Mitchell, Q.X. Jia, T.E. Schlesinger, D.D. Stancil, Mobility of 180○ domain walls in congruent LiTaO3 measured using real-time electro-optic imaging microscopy. J.  Appl. Phys. 86, 1638–1646 (1999)

    Article  ADS  Google Scholar 

  44. V. Gopalan, T.E. Mitchell, In situ video observation of 180○ domain switching in LiTaO3 by electro-optic imaging microscopy. J.  Appl. Phys. 85, 2304–2311 (1999)

    Article  ADS  Google Scholar 

  45. V. Goapalan, Q.X. Jia, T.E. Mitchell, In situ observation of 180○ domain kinetics in congruent LiNbO3 crystals. Appl. Phys. Lett. 75, 2482–2484 (1999)

    Article  ADS  Google Scholar 

  46. S. Kim, V. Gopalan, K. Kitamura, Y. Furukawa, Domain reversal and nonstoichiometry in lithium tantalate. J.  Appl. Phys. 90, 2949–2963 (2001)

    Article  ADS  Google Scholar 

  47. M.J. Missey, S. Russell, V. Dominic, R.G. Batchko, K.L. Schepler, Real-time visualization of domain formation in periodically poled lithium niobate. Opt. Express 6, 186–195 (2000)

    Article  ADS  Google Scholar 

  48. M. Müller, E. Soergel, K. Buse, Visualization of ferroelectric domains with coherent light. Opt. Lett. 28, 2515–2517 (2003)

    Article  ADS  Google Scholar 

  49. M. Müller, E. Soergel, K. Buse, Light deflection from ferroelectric domain structures in congruent lithium tantalate crystals. Appl. Opt. 43, 6344–6347 (2004)

    Article  ADS  Google Scholar 

  50. M. Müller, E. Soergel, M.C. Wengler, K. Buse, Light deflection from ferroelectric domain boundaries. Appl. Phys. B 78, 367–370 (2004)

    Article  ADS  Google Scholar 

  51. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, R. Meucci, Whole optical wavefields reconstruction by digital holography. Opt. Express 9, 294–302 (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-294

    Article  ADS  Google Scholar 

  52. S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, Correct-image reconstruction in the presence of severe anamorphism by means of digital holography. Opt. Lett. 26, 974–976 (2001)

    Article  ADS  Google Scholar 

  53. P. Ferraro, S. De Nicola, G. Coppola, Digital hoplography: recent advancements and prospective improvements for applications in microscopy, in Optical Imaging Sensors and Systems for Homeland Security Applications, ed. by B. Javidi (Springer, New York, 2006), pp. 47–84, Chap. 3

    Chapter  Google Scholar 

  54. P. Ferraro, S. De Nicola, G. Coppola, Controlling image recostruction process, in digital holography, in Digital Holography and Three-Dimensional Display, Principles and Applications, ed. by T.-C. Poon (Springer, Berlin, 2006), pp. 173–212

    Chapter  Google Scholar 

  55. S. Grilli, P. Ferraro, M. Paturzo, D. Alfieri, P. De Natale, In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography. Opt. Express 12, 1832–1842 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1832

    Article  ADS  Google Scholar 

  56. C. Canalias, S. Wang, V. Pasiskevicius, F. Laurell, Nucleation and growth of periodic domains during electric field poling in flux-grown KTiOPO4 observed by atomic force microscopy. Appl. Phys. Lett. 88, 032905 (2006)

    Article  ADS  Google Scholar 

  57. C. Canalias, J. Hirohashi, V. Pasiskevicius, F. Laurell, Polarization-switching characteristics of flux-grown KTiOPO4 and RbTiOPO4 at room temperature. J.  Appl. Phys. 97, 124105 (2005)

    Article  ADS  Google Scholar 

  58. Z.W. Hu, P.A. Thomas, W.P. Risk, Studies of periodic ferroelectric domains in KTiOPO4 using high-resolution X-ray scattering and diffraction imaging. Phys. Rev. B 59, 14259–14264 (1999)

    Article  ADS  Google Scholar 

  59. J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, F. Laurell, Real-time and in-situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4. J.  Appl. Phys. 90, 1489–1495 (2001)

    Article  ADS  Google Scholar 

  60. C. Canalias, V. Pasiskevicius, F. Laurell, S. Grilli, P. Ferraro, P. De Natale, In-situ visualization of domain kinetics in flux grown KTiOPO4 by digital holography. J.  Appl. Phys. 102, 064105 (2007)

    Article  ADS  Google Scholar 

  61. M. de Angelis, P. Ferraro, S. Grilli, S. De Nicola, A. Finizio, M. Paturzo, G. Pierattini, Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method. Appl. Phys. Lett. 85, 2785 (2004)

    Article  ADS  Google Scholar 

  62. S. Kim, V. Gopalan, K. Kitamura, Y. Furukawa, J.  Appl. Phys. 90, 2949 (2001)

    Article  ADS  Google Scholar 

  63. H. Donneberg, S.M. Tomlinson, C.R.A. Catlow, O.F. Schirmer, Phys. Rev. B 40, 11909 (1989)

    Article  ADS  Google Scholar 

  64. A.V. Yatsenko, E.N. Ivanova, N.A. Sergeev, Physica B 240, 254 (1997)

    Article  ADS  Google Scholar 

  65. J.-H. Ro, M. Cha, Appl. Phys. Lett. 77, 2391 (2000)

    Article  ADS  Google Scholar 

  66. G. Arlt, H. Neumann, Ferroelectrics 87, 109 (1988)

    Google Scholar 

  67. A.V. Yatsenko, Phys. Solid State 40, 109 (1998)

    Article  ADS  Google Scholar 

  68. M. Paturzo, L. Aiello, F. Pignatiello, P. Ferraro, P. De Natale, M. de Angelis, S. De Nicola, Investigation of optical birefringence at ferroelectric domain wall in LiNbO3 by phase-shift polarimetry. Appl. Phys. Lett. 88, 151918–151920 (2006)

    Article  ADS  Google Scholar 

  69. T.J. Yang, U. Mohideen, Phys. Lett. A 250, 205 (1998)

    Article  ADS  Google Scholar 

  70. T.Y. Chen, C.H. Lin, Opt. Lasers Eng. 30, 527 (1998)

    Article  Google Scholar 

  71. A. Asundi, L. Tong, C.G. Boay, Appl. Opt. 38, 5931 (1999)

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferraro, P., Grilli, S., Paturzo, M., De Nicola, S. (2009). Visual and Quantitative Characterization of Ferroelectric Crystals and Related Domain Engineering Processes by Interferometric Techniques. In: Ferraro, P., Grilli, S., De Natale, P. (eds) Ferroelectric Crystals for Photonic Applications. Springer Series in Materials Science, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77965-0_7

Download citation

Publish with us

Policies and ethics