Skip to main content

Fetal Tissue Engineering: Regenerative Capacity of Fetal Stem Cells

  • Chapter
  • 4623 Accesses

Abstract

Considerable debate has focused on the contrasting merits of embryonic and adult stem cells. Fetal stem cells represent an intermediate cell type in this controversy. Adult stem cells have limited capacity to differentiate into fully functioning mature cell types of their tissue of origin (multipotent), whereas embryonic stem cells (ESCs) have the advantageous capacity to develop into all tissue types (pluripotent), including trophoblasts (totipotent). However, ESC research has been hampered by both safety concerns and ethical reservations due to requisite destruction of the blastocyst during harvesting. Transplantation of ESCs is almost invariably followed by the development of embryonal teratomas, precluding cell transplantation. On the other hand, adult stem cells have the advantage of greater accessibility, but the disadvantage of more limited proliferative capacity and restricted plasticity. Nevertheless, adult mesenchymal stem cells (MSCs) can differentiate into a range of mesoderm-derived tissues such as bone, fat and cartilage, while adult haemopoietic stem cells (HSCs) can reconstitute the haemopoietic system. The plasticity of ESC might seem to give them a therapeutic advantage over adult stem cells, whereas, in effect, this limits potential therapeutic application as a result of oncogenicity. So it is adult stem cells that hold promise for cell transplantation, while the eventual clinical use for ESCs is likely to be in tissue engineering applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar S, Nye E, Chan J et al (2007) Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung. Stem Cells 25:1586–1594

    Article  PubMed  Google Scholar 

  2. Aiuti A, Slavin S, Aker M et al (2002) Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296:2410–2413

    Article  PubMed  CAS  Google Scholar 

  3. Almeida-Porada G, Porada C, Esmail D (2000) Differentiation potential of human metanephric stem cells: from mesenchyme to blood. Blood 96:494a

    Google Scholar 

  4. Almeida-Porada G, El Shabrawy D, Porada C et al (2002) Differentiative potential of human metanephric mesenchymal cells. Exp Hematol 30:1454–1462

    Article  PubMed  CAS  Google Scholar 

  5. Alviano F, Fossati V, Marchionni C et al (2007) Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC developmental biology 7:11

    Article  PubMed  CAS  Google Scholar 

  6. Aractingi S, Berkane N, Bertheau P et al (1998) Fetal DNA in skin of polymorphic eruptions of pregnancy. Lancet 352:1898–1901

    Article  PubMed  CAS  Google Scholar 

  7. Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25:1384–1392

    Article  PubMed  CAS  Google Scholar 

  8. Battula VL, Bareiss PM, Treml S et al (2007) Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation 75:279–291

    Article  PubMed  CAS  Google Scholar 

  9. Bernardo ME, Emons JA, Karperien M et al (2007) Human mesenchymal stem cells derived from bone marrow display a better chondrogenic differentiation compared with other sources. Connect Tissue Res 48:132–140

    Article  PubMed  CAS  Google Scholar 

  10. Bianchi DW (2007) Robert E. Gross Lecture. Fetomaternal cell trafficking: a story that begins with prenatal diagnosis and may end with stem cell therapy. J Pediatr Surg 42:12–18

    Article  PubMed  Google Scholar 

  11. Bianchi DW, Zickwolf GK, Weil GJ et al (1996) Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci U S A 93:705–708

    Article  PubMed  CAS  Google Scholar 

  12. Bieback K, Kern S, Kluter H et al (2004) Critical para-meters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22:625–634

    Article  PubMed  Google Scholar 

  13. Campagnoli C, Fisk N, Overton T et al (2000) Circulating hematopoietic progenitor cells in first trimester fetal blood. Blood 95:1967–1972

    PubMed  CAS  Google Scholar 

  14. Campagnoli C, Roberts IA, Kumar S et al (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402

    Article  PubMed  CAS  Google Scholar 

  15. Cantz T, Zuckerman DM, Burda MR et al (2003) Quantitative gene expression analysis reveals transition of fetal liver progenitor cells to mature hepatocytes after transplantation in uPA/RAG-2 mice. Am J Pathol 162:37–45

    PubMed  CAS  Google Scholar 

  16. Carpenter MK, Cui X, Hu ZY et al (1999) In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol 158:265–278

    Article  PubMed  CAS  Google Scholar 

  17. Cha D, Khosrotehrani K, Kim Y et al (2003) Cervical cancer and microchimerism. Obstet Gynecol 102:774–781

    Article  PubMed  Google Scholar 

  18. Chan J, Kumar S, Fisk NM (2008) First trimester embryo-fetoscopic and ultrasound-guided fetal blood sampling for ex-vivo viral transduction of cultured human fetal mesenchymal stem cells. Hum Reprod 23:2427–37

    Article  PubMed  Google Scholar 

  19. Chan J, O’Donoghue K, Kennea N et al (2003) Myogenic potential of fetal mesenchymal stem cells. Ann Acad Med Singapore 32:S11–S13

    PubMed  CAS  Google Scholar 

  20. Chan J, O’Donoghue K, de la Fuente J et al (2005) Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem Cells 23:93–102

    Article  PubMed  CAS  Google Scholar 

  21. Chan J, Waddington SN, O’Donoghue K et al (2007) Widespread distribution and muscle differentiation of human fetal mesenchymal stem cells after intrauterine transplantation in dystrophic mdx mouse. Stem Cells 25:875–884

    Article  PubMed  CAS  Google Scholar 

  22. Chan J, O’Donoghue K, Gavina M et al (2006) Galectin-1 induces skeletal muscle differentiation in human fetal mesenchymal stem cells and increases muscle regeneration. Stem Cells 24:1879–1891

    Article  PubMed  CAS  Google Scholar 

  23. Christner PJ, Artlett CM, Conway RF et al (2000) Increased numbers of microchimeric cells of fetal origin are associated with dermal fibrosis in mice following injection of vinyl chloride. Arthritis Rheum 43:2598–2605

    Article  PubMed  CAS  Google Scholar 

  24. Cipriani S, Bonini D, Marchina E et al (2007) Mesenchymal cells from human amniotic fluid survive and migrate after transplantation into adult rat brain. Cell Biol Int 31:845–850

    Article  PubMed  CAS  Google Scholar 

  25. Clapp DW, Freie B, Lee WH et al (1995) Molecular evidence that in situ-transduced fetal liver hematopoietic stem/progenitor cells give rise to medullary hematopoiesis in adult rats. Blood 86:2113–2122

    PubMed  CAS  Google Scholar 

  26. Cui Y, Wang H, Yu M et al (2006) Differentiation plasticity of human fetal articular chondrocytes. Otolaryngol Head Neck Surg 135:61–67

    Article  PubMed  Google Scholar 

  27. Dabeva MD, Petkov PM, Sandhu J et al (2000) Proliferation and differentiation of fetal liver epithelial progenitor cells after transplantation into adult rat liver. Am J Pathol 156:2017–2031

    PubMed  CAS  Google Scholar 

  28. De Coppi P, Bartsch G Jr, Siddiqui MM et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106

    Article  PubMed  CAS  Google Scholar 

  29. de la Fuente J, O’Donoghue K, Kumar S et al (2002) Ontogeny-related changes in integrin expression and cytokine production by fetal mesenchymal stem cells (MSC). Blood 100:526a

    Google Scholar 

  30. de la Fuente J, Fisk N, O’Donoghue K et al (2003) a2b1 and a4b1 integrins mediate the homing of mesenchymal stem/progenitor cells during fetal life. Haematol J 4:13

    Google Scholar 

  31. Devine SM, Bartholomew AM, Mahmud N et al (2001) Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 29:244–255

    Article  PubMed  CAS  Google Scholar 

  32. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242

    Article  PubMed  CAS  Google Scholar 

  33. Fisk NM, Atun R (2008) Public-private partnership in cord blood banking. BMJ 336:642–644

    Article  PubMed  Google Scholar 

  34. Flake A, Zanjani E (1999) In utero hematopoietic stem cell transplantation: ontogenic opportunities and biologic barriers. Blood 94:2179–2191

    PubMed  CAS  Google Scholar 

  35. Flake AW, Roncarolo MG, Puck JM et al (1996) Treatment of X-linked severe combined immunodeficiency by in utero transplantation of paternal bone marrow. N Engl J Med 335:1806–1810

    Article  PubMed  CAS  Google Scholar 

  36. Frattini A, Blair HC, Sacco MG et al (2005) Rescue of ATPa3-deficient murine malignant osteopetrosis by hematopoietic stem cell transplantation in utero. Proc Natl Acad Sci U S A 102:14629–14634

    Article  PubMed  CAS  Google Scholar 

  37. Gaspar HB, Parsley KL, Howe S et al (2004) Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 364:2181–2187

    Article  PubMed  CAS  Google Scholar 

  38. Gonzalez R, Maki CB, Pacchiarotti J et al (2007) Pluripotent marker expression and differentiation of human second trimester mesenchymal stem cells. Biochem Biophysical Res Commun 362:491–497

    Article  CAS  Google Scholar 

  39. Gotherstrom C, Ringden O, Westgren M et al (2003) Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant 32:265–272

    Article  PubMed  CAS  Google Scholar 

  40. Gotherstrom C, Ringden O, Tammik C et al (2004) Immunologic properties of human fetal mesenchymal stem cells. Am J Obstet Gynecol 190:239–245

    Article  PubMed  CAS  Google Scholar 

  41. Guillot PV, O’Donoghue K, Kurata H et al (2006) Fetal stem cells: betwixt and between. Semin Reprod Med 24:340–347

    Article  PubMed  CAS  Google Scholar 

  42. Guillot PV, Cui W, Fisk NM et al (2007) Stem cell differentiation and expansion for clinical applications of tissue engineering. J Cell Mol Med 11:935–944

    Article  PubMed  CAS  Google Scholar 

  43. Guillot PV, Gotherstrom C, Chan J et al (2007) Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells 25:646–654

    Article  PubMed  CAS  Google Scholar 

  44. Guillot PV, Abass O, Bassett JH et al (2007) Intrauterine transplantation of human fetal mesenchymal stem cells from first trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood 111:1717–1725

    Article  PubMed  CAS  Google Scholar 

  45. Hacein-Bey-Abina S, Le Deist F, Carlier F et al (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185–1193

    Article  PubMed  CAS  Google Scholar 

  46. Harrison D, Zhong R, Jordan C et al (1997) Relative to adult marrow, fetal liver repopulates nearly five times more effectively long-term than short-term. Exp Hematol 25:293–297

    PubMed  CAS  Google Scholar 

  47. Horwitz EM, Prockop DJ, Fitzpatrick LA et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313

    Article  PubMed  CAS  Google Scholar 

  48. Huang H, Tang X (2003) Phenotypic determination and characterization of nestin-positive precursors derived from human fetal pancreas. Lab Invest 83:539–547

    PubMed  CAS  Google Scholar 

  49. Igura K, Zhang X, Takahashi K et al (2004) Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 6:543–553

    Article  PubMed  CAS  Google Scholar 

  50. in ‘t Anker PS, Noort WA, Kruisselbrink AB et al (2003) Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 31:881–889

    Article  PubMed  Google Scholar 

  51. in ‘t Anker PS, Noort WA, Scherjon SA et al (2003) Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 88:845–852

    PubMed  Google Scholar 

  52. Javed MJ, Mead LE, Prater D et al (2008) Endothelial colony forming cells and mesenchymal stem cells are enriched at different gestational ages in human umbilical cord blood. Pediatr Res 64:68–73

    Article  PubMed  Google Scholar 

  53. Johansson CB, Momma S, Clarke DL et al (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34

    Article  PubMed  CAS  Google Scholar 

  54. Kadner A, Zund G, Maurus C et al (2004) Human umbilical cord cells for cardiovascular tissue engineering: a comparative study. Eur J Cardiothorac Surg 25:635–641

    Article  PubMed  Google Scholar 

  55. Kadner A, Hoerstrup SP, Tracy J et al (2002) Human umbilical cord cells: a new cell source for cardiovascular tissue engineering. Ann Thorac Surg 74:S1422–S1428

    Article  PubMed  Google Scholar 

  56. Kakishita K, Nakao N, Sakuragawa N et al (2003) Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Res 980:48–56

    Article  PubMed  CAS  Google Scholar 

  57. Kakishita K, Elwan MA, Nakao N et al (2000) Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson’s disease: a potential source of donor for transplantation therapy. Exp Neurol 165:27–34

    Article  PubMed  CAS  Google Scholar 

  58. Karahuseyinoglu S, Cinar O, Kilic E et al (2007) Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25:319–331

    Article  PubMed  CAS  Google Scholar 

  59. Kaviani A, Guleserian K, Perry TE et al (2003) Fetal tissue engineering from amniotic fluid. J Am Coll Surg 196:592–597

    Article  PubMed  Google Scholar 

  60. Kennea N, Fisk N, Edwards A et al (2003) Neural cell differentiation of fetal mesenchymal stem cells. Early Hum Dev 73:121–122

    Google Scholar 

  61. Kennea NL, Waddington S, O’Donoghue K et al (2008) Differentiation of human fetal mesenchymal stem cells into oligodendrocytes without cell fusion. (Submitted)

    Google Scholar 

  62. Khosrotehrani K, Johnson KL, Cha DH et al (2004) Transfer of fetal cells with multilineage potential to maternal tissue. JAMA 292:75–80

    Article  PubMed  CAS  Google Scholar 

  63. Khosrotehrani K, Johnson KL, Guegan S et al (2005) Natural history of fetal cell microchimerism during and following murine pregnancy. J Reprod Immunol 66:1–12

    Article  PubMed  CAS  Google Scholar 

  64. Khosrotehrani K, Reyes RR, Johnson KL et al (2007) Fetal cells participate over time in the response to specific types of murine maternal hepatic injury. Hum Reprod 22:654–661

    Article  PubMed  CAS  Google Scholar 

  65. Kogler G, Sensken S, Wernet P (2006) Comparative generation and characterization of pluripotent unrestricted somatic stem cells with mesenchymal stem cells from human cord blood. Exp Hematol 34:1589–1595

    Article  PubMed  CAS  Google Scholar 

  66. Kogler G, Sensken S, Airey JA et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200:123–135

    Article  PubMed  Google Scholar 

  67. Kohn DB, Sadelain M, Glorioso JC (2003) Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer 3:477–488

    Article  PubMed  CAS  Google Scholar 

  68. Le Blanc K, Ringden O (2005) Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 11:321–334

    Article  PubMed  CAS  Google Scholar 

  69. Le Blanc K, Gotherstrom C, Ringden O et al (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 79:1607–1614

    Article  PubMed  Google Scholar 

  70. Lee OK, Kuo TK, Chen WM et al (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675

    Article  PubMed  CAS  Google Scholar 

  71. Liechty KW, MacKenzie TC, Shaaban AF et al (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286

    Article  PubMed  CAS  Google Scholar 

  72. Liegeois A, Escourrou J, Ouvre E et al (1977) Microchimerism: a stable state of low-ratio proliferation of allogeneic bone marrow. Transplant Proc 9:273–276

    PubMed  CAS  Google Scholar 

  73. Liegeois A, Gaillard MC, Ouvre E et al (1981) Microchimerism in pregnant mice. Transplant Proc 13:1250–1252

    PubMed  CAS  Google Scholar 

  74. Mackenzie TC, Shaaban AF, Radu A et al (2002) Engraftment of bone marrow and fetal liver cells after in utero transplantation in MDX mice. J Pediatr Surg 37:1058–1064

    Article  PubMed  Google Scholar 

  75. MacKenzie TC, Campagnoli C, Almeida-Porada G et al (2001) Circulating human fetal stromal cells engraft and differentiate in multiple tissues following transplantation into pre-immune fetal lambs. Blood 98:798

    Google Scholar 

  76. MacKenzie TS, Campagnoli C, Almeida-Porada G et al (2001) Circulating human fetal stromal cells engraft and differentiate in multiple tissues following transplantation into pre-immune fetal lambs. Blood 98:328a

    Article  Google Scholar 

  77. McElreavey KD, Irvine AI, Ennis KT et al (1991) Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton’s jelly portion of human umbilical cord. Biochem Soc Trans 19:29S

    PubMed  CAS  Google Scholar 

  78. Medvinsky A, Dzierzak E (1996) Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86:897–906

    Article  PubMed  CAS  Google Scholar 

  79. Miki T, Lehmann T, Cai H et al (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559

    Article  PubMed  CAS  Google Scholar 

  80. Mitchell KE, Weiss ML, Mitchell BM et al (2003) Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 21:50–60

    PubMed  CAS  Google Scholar 

  81. Nagai A, Kim WK, Lee HJ et al. (2007) Multilineage potential of stable human mesenchymal stem cell line derived from fetal marrow. PLoS ONE 2:e1272

    Article  PubMed  CAS  Google Scholar 

  82. Naughton BA, San Roman J, Liu K (1997) Cells isolated from Wharton’s jelly of the human umbilical cord develop a cartilage phenotype when treated with TGFβ in vitro. FASEB 11:19

    Google Scholar 

  83. Nguyen Huu S, Oster M, Uzan S et al (2007) Maternal neoangiogenesis during pregnancy partly derives from fetal endothelial progenitor cells. Proc Natl Acad Sci U S A 104:1871–1876

    Article  PubMed  CAS  Google Scholar 

  84. Nicolini U, Poblete A (1999) Single intrauterine death in monochorionic twin pregnancies. Ultrasound Obstet Gynecol 14:297–301

    Article  PubMed  CAS  Google Scholar 

  85. Nowak G, Ericzon BG, Nava S et al (2005) Identification of expandable human hepatic progenitors which differentiate into mature hepatic cells in vivo. Gut 54:972–979

    Article  PubMed  CAS  Google Scholar 

  86. O’Donoghue K, Sultan HA, Al-Allaf FA et al (2008) Microchimeric fetal cells cluster at sites of tissue injury in lung decades after pregnancy. Reprod Biomed Online 16:382–390

    Article  PubMed  Google Scholar 

  87. O’Donoghue K, Chan J, de la Fuente J et al (2004) Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet 364:179–182

    Article  PubMed  Google Scholar 

  88. Orlandi F, Damiani G, Jakil C et al (1990) The risks of early cordocentesis (12–21 weeks): analysis of 500 procedures. Prenat Diagn 10:425–428

    Article  PubMed  CAS  Google Scholar 

  89. Peranteau WH, Endo M, Adibe OO et al (2007) Evidence for an immune barrier after in utero hematopoietic-cell transplantation. Blood 109:1331–1333

    Article  PubMed  CAS  Google Scholar 

  90. Portmann-Lanz CB, Schoeberlein A, Huber A et al (2006) Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol 194:664–673

    Article  PubMed  CAS  Google Scholar 

  91. Prat-Vidal C, Roura S, Farre J et al (2007) Umbilical cord blood-derived stem cells spontaneously express cardiomyogenic traits. Transplant Proc 39:2434–2437

    Article  PubMed  CAS  Google Scholar 

  92. Prusa AR, Marton E, Rosner M et al (2003) Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Hum Reprod 18:1489–1493

    Article  PubMed  Google Scholar 

  93. Purchio AF, Naughton BA, Roman JS (1999) Production of cartilage tissue using cells isolated from Wharton’s Jelly. U.S. patent number 5,919,702

    Google Scholar 

  94. Rebel V, Miller C, Eaves C et al (1996) The repopulation potential of fetal liver hematopoietic stem cells in mice exceeds that of their liver adult bone marrow counterparts. Blood 87:3500–3507

    PubMed  CAS  Google Scholar 

  95. Rhodes KE, Gekas C, Wang Y et al (2008) The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell 2:252–263

    Article  PubMed  CAS  Google Scholar 

  96. Rocha V, Sanz G, Gluckman E (2004) Umbilical cord blood transplantation. Curr Opin Hematol 11:375–385

    Article  PubMed  Google Scholar 

  97. Rollini P, Kaiser S, Faes-van’t Hull E et al (2004) Long-term expansion of transplantable human fetal liver hematopoietic stem cells. Blood 103:1166–1170

    Article  PubMed  CAS  Google Scholar 

  98. Sarugaser R, Lickorish D, Baksh D et al (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23:220–229

    Article  PubMed  Google Scholar 

  99. Schoeberlein A, Holzgreve W, Dudler L et al (2005) Tissue-specific engraftment after in utero transplantation of allogeneic mesenchymal stem cells into sheep fetuses. Am J Obstet Gynecol 192:1044–1052

    Article  PubMed  CAS  Google Scholar 

  100. Secco M, Zucconi E, Vieira NM et al (2008) Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells 26:146–150

    Article  PubMed  CAS  Google Scholar 

  101. Soncini M, Vertua E, Gibelli L et al (2007) Isolation and characterization of mesenchymal cells from human fetal membranes. J Ttissue Eng Regen Med 1:296–305

    Article  CAS  Google Scholar 

  102. Srivatsa B, Srivatsa S, Johnson KL et al (2001) Microchimerism of presumed fetal origin in thyroid specimens from women: a case-control study. Lancet 358:2034–2038

    Article  PubMed  CAS  Google Scholar 

  103. Surbek D, Tercanli S, Holzgreve W (2000) Transabdominal first trimester embryofetoscopy as a potential approach to early in utero stem cell transplantation and gene therapy. Ultrasound Obstet Gynecol 15:302–307

    Article  PubMed  CAS  Google Scholar 

  104. Surbek D, Schoeberlein A, Dudler L et al (2003) In utero transplantation of autologous and allogeneic fetal liver stem cells in fetal sheep. Am J Obstet Gynecol 189:S75

    Article  Google Scholar 

  105. Surbek DV, Young A, Danzer E et al (2002) Ultrasound-guided stem cell sampling from the early ovine fetus for prenatal ex vivo gene therapy. Am J Obstet Gynecol 187:960–963.

    Article  PubMed  Google Scholar 

  106. Takechi K, Kuwabara Y, Mizuno M (1993) Ultrastructural and immunohistochemical studies of Wharton’s jelly umbilical cord cells. Placenta 14:235–245

    Article  PubMed  CAS  Google Scholar 

  107. Tan XW, Liao H, Sun L et al (2005) Fetal microchimerism in the maternal mouse brain: a novel population of fetal progenitor or stem cells able to cross the blood-brain barrier? Stem Cells 23:1443–1452

    Article  PubMed  CAS  Google Scholar 

  108. Taylor PA, McElmurry RT, Lees CJ et al (2002) Allogenic fetal liver cells have a distinct competitive engraftment advantage over adult bone marrow cells when infused into fetal as compared with adult severe combined immunodeficient recipients. Blood 99:1870–1872

    Article  PubMed  Google Scholar 

  109. Thrasher A (2007) Severe adverse event in clinical trial of gene therapy for X-SCID. http://www.esgct.org/upload/X-SCID_statement_AT.pdf

    Google Scholar 

  110. Tiblad E, Westgren M (2007) Fetal stem-cell transplantation. Best Pract Res Clin Obstet Gynaecol:22:189–201

    Article  PubMed  Google Scholar 

  111. Tsai MS, Lee JL, Chang YJ et al (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod

    Google Scholar 

  112. Uchida N, Buck DW, He D et al (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97:14720–14725

    Article  PubMed  CAS  Google Scholar 

  113. Wang Y, Iwatani H, Ito T et al (2004) Fetal cells in mother rats contribute to the remodeling of liver and kidney after injury. Biochem Biophys Research Commun 325:961–967

    Article  CAS  Google Scholar 

  114. Weiss ML, Mitchell KE, Hix JE et al (2003) Transplantation of porcine umbilical cord matrix cells into the rat brain. Exp Neurol 182:288–299

    Article  PubMed  CAS  Google Scholar 

  115. Weiss ML, Medicetty S, Bledsoe AR et al (2006) Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells 24:781–792

    Article  PubMed  CAS  Google Scholar 

  116. Wengler GS, Lanfranchi A, Frusca T et al (1996) In-utero transplantation of parental CD34 haematopoietic progenitor cells in a patient with X-linked severe combined immunodeficiency (SCIDXI). Lancet 348:1484–1487

    Article  PubMed  CAS  Google Scholar 

  117. Westgren M, Ringden O, Bartmann P et al (2002) Prenatal T-cell reconstitution after in utero transplantation with fetal liver cells in a patient with X-linked severe combined immunodeficiency. Am J Obstet Gynecol 187:475–482

    Article  PubMed  Google Scholar 

  118. Yao M, Dieterle T, Hale SL et al (2003) Long-term outcome of fetal cell transplantation on postinfarction ventricular remodeling and function. J Mol Cell Cardiol 35:661–670

    Article  PubMed  CAS  Google Scholar 

  119. Young HE, Steele TA, Bray RA et al (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 264:51–62

    Article  PubMed  CAS  Google Scholar 

  120. Zhang Y, Li CD, Jiang XX et al (2004) Comparison of mesenchymal stem cells from human placenta and bone marrow. Chin Med J (Engl) 117:882–887

    CAS  Google Scholar 

  121. Zhao P, Ise H, Hongo M et al (2005) Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 79:528–535

    Article  PubMed  Google Scholar 

  122. Zigova T, Song S, Willing AE et al (2002) Human umbilical cord blood cells express neural antigens after transplantation into the developing rat brain. Cell Ttransplant 11:265–274

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wu, P., Moschidou, D., Fisk, N. (2009). Fetal Tissue Engineering: Regenerative Capacity of Fetal Stem Cells. In: Meyer, U., Handschel, J., Wiesmann, H., Meyer, T. (eds) Fundamentals of Tissue Engineering and Regenerative Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77755-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77755-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77754-0

  • Online ISBN: 978-3-540-77755-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics