Skip to main content

Biomolecule Use in Tissue Engineering

  • Chapter

Abstract

Tissue engineering is an interdisciplinary field in biomedical engineering that aims to regenerate new biological material to replace diseased or damaged tissues or organs. Tissue engineering is based on principles of cellular and molecular developmental biology and morphogenesis guided by bioengineering and biomechanics. The three key ingredients for both morphogenesis and tissue engineering are inductive signals (regulatory biomolecules, morphogens), responding cells and extracellular matrix (scaffolds) [108]. Morphogens regulate the proliferation and differentiation of cells, whereas scaffolds serve as a carrier and delivery system for the morphogens and simultaneously produce and influence the microenvironment [113]. Regulatory biomolecules, such as differentiation or growth factors and cytokines, are released by many different sorts of cells in a diverse manner (endocrine, autocrine, paracrine, juxtacrine or intracrine), targeted at a particular cell or cells to carry out a specific reaction (Tables 11.1, 11.2) [75]. The term cytokine is generally reserved to describe factors associated with cells involved in the immune system, but in many instances the term growth factor is used as a synonym for cytokines [101]. When a growth factor binds to a target cell receptor an intracellular signal transduction system is activated that finally reaches the nucleus and produces a biological response [79]. These ligand-receptor interactions are very specific and vary from the simple binding of one ligand to one particular cellular receptor to complex interactions with one or more ligands binding to one or more receptors. Additionally, the ligand-receptor interactions are even more complicated as different variants of the same growth factor may bind to a single receptor, or different growth factor receptors may be activated by a single ligand [53].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez RH, Kantarjian HM, Cortes JE (2006) Biology of platelet-derived growth factor and its involvement in disease. Mayo Clin Proc 81:1241-1257

    PubMed  CAS  Google Scholar 

  2. Anusaksathien O, Webb SA, Jin QM, Giannobile WV (2003) Platelet-derived growth factor gene delivery stimulates ex vivo gingival repair. Tissue Eng 9:745-756

    PubMed  CAS  Google Scholar 

  3. Anusaksathien O, Jin Q, Zhao M, Somerman MJ, Giannobile WV (2004) Effect of sustained gene delivery of platelet-derived growth factor or its antagonist (PDGF-1308) on tissue-engineered cementum. J Periodontol 75:429-440

    PubMed  CAS  Google Scholar 

  4. Arnander C, Westermark A, Veltheim R, Docherty-Skogh AC, Hilborn J, Engstrand T (2006) Three-dimensional technology and bone morphogenetic protein in frontal bone reconstruction. J Craniofac Surg 17:275-279

    PubMed  Google Scholar 

  5. Bartold PM, Narayanan AS, Page RC (1992) Platelet-derived growth factor reduces the inhibitory effects of lipopolysaccharide on gingival fibroblast proliferation. J Periodontal Res 27:499-505

    PubMed  CAS  Google Scholar 

  6. Bastaki M, Nelli EE, Dell’Era P, Rusnati M, Molinari-Tosatti MP, Parolini S, Auerbach R, Ruco LP, Possati L, Presta M (1997) Basic fibroblast growth factor-induced angiogenic phenotype in mouse endothelium. A study of aortic and microvascular endothelial cell lines. Arterioscler Thromb Vasc Biol 17:454-464

    PubMed  CAS  Google Scholar 

  7. Bateman J, Intini G, Margarone J, Goodloe S, Bush P, Lynch SE, Dziak R (2005) Platelet-derived growth factor enhancement of two alloplastic bone matrices. J Periodontol 76:1833-1841

    PubMed  CAS  Google Scholar 

  8. Becerra J, Guerado E, Claros S, Alonso M, Bertrand ML, Gonzalez C, Andrades JA (2006) Autologous human-derived bone marrow cells exposed to a novel TGF-beta1 fusion protein for the treatment of critically sized tibial defect. Regen Med 1:267-278

    PubMed  CAS  Google Scholar 

  9. Binz K, Schmid C, Bouillon R, Froesch ER, Jurgensen K, Hunziker EB (1994) Interactions of insulin-like growth factor I with dexamethasone on trabecular bone density and mineral metabolism in rats. Eur J Endocrinol 130:387-393

    PubMed  CAS  Google Scholar 

  10. Blaimauer K, Watzinger E, Erovic BM, Martinek H, Jagersberger T, Thurnher D (2006) Effects of epidermal growth factor and keratinocyte growth factor on the growth of oropharyngeal keratinocytes in coculture with autologous fibroblasts in a three-dimensional matrix. Cells Tissues Organs 182:98-105

    PubMed  CAS  Google Scholar 

  11. Block GD, Locker J, Bowen WC, Petersen BE, Katyal S, Strom SC, Riley T, Howard TA, Michalopoulos GK (1996) Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium. J Cell Biol 132:1133-1149

    PubMed  CAS  Google Scholar 

  12. Bonewald L (2002) Transforming growth factor beta. In: Bilezikian JP, Raisz LG, Rodan GA (eds) 2nd edn. Academic Press, San Diego, pp 903-918

    Google Scholar 

  13. Bowen-Pope DF, Malpass TW, Foster DM, Ross R (1984) Platelet-derived growth factor in vivo: levels, activity, and rate of clearance. Blood 64:458-469

    PubMed  CAS  Google Scholar 

  14. Boyan LA, Bhargava G, Nishimura F, Orman R, Price R, Terranova VP (1994) Mitogenic and chemotactic responses of human periodontal ligament cells to the different isoforms of platelet-derived growth factor. J Dent Res 73:1593-1600

    PubMed  CAS  Google Scholar 

  15. Boyne PJ, Salina S, Nakamura A, Audia F, Shabahang S (2006) Bone regeneration using rhBMP-2 induction in hemimandibulectomy type defects of elderly sub-human primates. Cell Tissue Bank 7:1-10

    PubMed  CAS  Google Scholar 

  16. Breitbart AS, Mason JM, Urmacher C, Barcia M, Grant RT, Pergolizzi RG, Grande DA (1999) Gene-enhanced tissue engineering: applications for wound healing using cultured dermal fibroblasts transduced retrovirally with the PDGF-B gene. Ann Plast Surg 43:632-639

    PubMed  CAS  Google Scholar 

  17. Cai DZ, Zeng C, Quan DP, Bu LS, Wang K, Lu HD, Li XF (2007) Biodegradable chitosan scaffolds containing microspheres as carriers for controlled transforming growth factor-beta1 delivery for cartilage tissue engineering. Chin Med J (Engl) 120:197-203

    CAS  Google Scholar 

  18. Canalis E, McCarthy TL, Centrella M (1989) Effects of platelet-derived growth factor on bone formation in vitro. J Cell Physiol 140:530-537

    PubMed  CAS  Google Scholar 

  19. Canalis E, Varghese S, McCarthy TL, Centrella M (1992) Role of platelet derived growth factor in bone cell function. Growth Regul 2:151-155

    PubMed  CAS  Google Scholar 

  20. Capito RM, Spector M (2007) Collagen scaffolds for nonviral IGF-1 gene delivery in articular cartilage tissue engineering. Gene Ther 14:721-732

    PubMed  CAS  Google Scholar 

  21. Carlisle E, Fischgrund JS (2005) Bone morphogenetic proteins for spinal fusion. Spine J 5:240S-249S

    PubMed  Google Scholar 

  22. Carpenter G, Cohen S (1979) Epidermal growth factor. Annu Rev Biochem 48:193-216

    PubMed  CAS  Google Scholar 

  23. Celeste AJ, Iannazzi JA, Taylor RC, Hewick RM, Rosen V, Wang EA, Wozney JM (1990) Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone. Proc Natl Acad Sci U S A 87:9843-9847

    PubMed  CAS  Google Scholar 

  24. Chiou M, Xu Y, Longaker MT (2006) Mitogenic and chondrogenic effects of fibroblast growth factor-2 in adipose-derived mesenchymal cells. Biochem Biophys Res Commun 343:644-652

    PubMed  CAS  Google Scholar 

  25. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH (2004) Interaction between insulin-like growth factor-1 with other growth factors in serum depleted culture medium for human cartilage engineering. Med J Malaysia 59 Suppl B:7-8

    PubMed  Google Scholar 

  26. Cras-Meneur C, Elghazi L, Czernichow P, Scharfmann R (2001) Epidermal growth factor increases undifferentiated pancreatic embryonic cells in vitro: a balance between proliferation and differentiation. Diabetes 50:1571-1579

    PubMed  CAS  Google Scholar 

  27. Denley A, Cosgrove LJ, Booker GW, Wallace JC, Forbes BE (2005) Molecular interactions of the IGF system. Cytokine Growth Factor Rev 16:421-439

    PubMed  CAS  Google Scholar 

  28. Depprich R, Handschel J, Sebald W, Kubler NR, Wurzler KK (2005) Comparison of the osteogenic activity of bone morphogenetic protein (BMP) mutants. Mund Kiefer Gesichtschir 9:363-368

    PubMed  CAS  Google Scholar 

  29. Detamore MS, Athanasiou KA (2005) Evaluation of three growth factors for TMJ disc tissue engineering. Ann Biomed Eng 33:383-390

    PubMed  Google Scholar 

  30. Dionne CA, Crumley G, Bellot F, Kaplow JM, Searfoss G, Ruta M, Burgess WH, Jaye M, Schlessinger J (1990) Cloning and expression of two distinct high-affinity receptors cross-reacting with acidic and basic fibroblast growth factors. Embo J 9:2685-2692

    PubMed  CAS  Google Scholar 

  31. Dreux AC, Lamb DJ, Modjtahedi H, Ferns GA (2006) The epidermal growth factor receptors and their family of ligands: their putative role in atherogenesis. Atherosclerosis 186:38-53

    PubMed  CAS  Google Scholar 

  32. Elisseeff J, McIntosh W, Fu K, Blunk BT, Langer R (2001) Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res 19:1098-1104

    PubMed  CAS  Google Scholar 

  33. Engele J, Bohn MC (1992) Effects of acidic and basic fibroblast growth factors (aFGF, bFGF) on glial precursor cell proliferation: age dependency and brain region specificity. Dev Biol 152:363-372

    PubMed  CAS  Google Scholar 

  34. Fakhry A, Ratisoontorn C, Vedhachalam C, Salhab I, Koyama E, Leboy P, Pacifici M, Kirschner RE, Nah HD (2005) Effects of FGF-2/-9 in calvarial bone cell cultures: differentiation stage-dependent mitogenic effect, inverse regulation of BMP-2 and noggin, and enhancement of osteogenic potential. Bone 36:254-266

    PubMed  CAS  Google Scholar 

  35. Fawzi-Grancher S, De Isla N, Faure G, Stoltz JF, Muller S (2006) Optimisation of biochemical condition and substrates in vitro for tissue engineering of ligament. Ann Biomed Eng 34:1767-1777

    PubMed  Google Scholar 

  36. Froesch ER, Buergi H, Ramseier EB, Bally P, Labhart A (1963) Antibody-suppressible and nonsuppressible insulin-like activities in human serum and their physiologic significance. an insulin assay with adipose tissue of increased precision and specificity. J Clin Invest 42:1816-1834

    PubMed  CAS  Google Scholar 

  37. Froesch ER (1993) IGFs: function and clinical importance. J Intern Med 234:533-534

    PubMed  CAS  Google Scholar 

  38. Fu P, Sodian R, Luders C, Lemke T, Kraemer L, Hubler M, Weng Y, Hoerstrup SP, Meyer R, Hetzer R (2004) Effects of basic fibroblast growth factor and transforming growth factor-beta on maturation of human pediatric aortic cell culture for tissue engineering of cardiovascular structures. Asaio J 50:9-14

    PubMed  CAS  Google Scholar 

  39. Fujita M, Ishihara M, Shimizu M, Obara K, Nakamura S, Kanatani Y, Morimoto Y, Takase B, Matsui T, Kikuchi M, Maehara T (2007) Therapeutic angiogenesis induced by controlled release of fibroblast growth factor-2 from injectable chitosan/non-anticoagulant heparin hydrogel in a rat hindlimb ischemia model. Wound Repair Regen 15:58-65

    PubMed  Google Scholar 

  40. Fukumoto T, Sperling JW, Sanyal A, Fitzsimmons JS, Reinholz GG, Conover CA, O’Driscoll SW (2003) Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthritis Cartilage 11:55-64

    PubMed  CAS  Google Scholar 

  41. Gamal AY, Mailhot JM (2000) The effect of local delivery of PDGF-BB on attachment of human periodontal ligament fibroblasts to periodontitis-affected root surfaces--in vitro. J Clin Periodontol 27:347-353

    PubMed  CAS  Google Scholar 

  42. Gersbach CA, Guldberg RE, Garcia AJ (2007) In vitro and in vivo osteoblastic differentiation of BMP-2-, Runx2-engineered skeletal myoblasts. J Cell Biochem 100:1324-1336

    PubMed  CAS  Google Scholar 

  43. Gombotz WR, Pankey SC, Bouchard LS, Ranchalis J, Puolakkainen P (1993) Controlled release of TGF-beta 1 from a biodegradable matrix for bone regeneration. J Biomater Sci Polym Ed 5:49-63

    PubMed  CAS  Google Scholar 

  44. Gomez G, Korkiakoski S, Gonzalez MM, Lansman S, Ella V, Salo T, Kellomaki M, Ashammakhi N, Arnaud E (2006) Effect of FGF and polylactide scaffolds on calvarial bone healing with growth factor on biodegradable polymer scaffolds. J Craniofac Surg 17:935-942

    PubMed  Google Scholar 

  45. Gospodarowicz D, Mescher AL, Birdwell CR (1978) Control of cellular proliferation by the fibroblast and epidermal growth factors. Natl Cancer Inst Monogr 109-130

    Google Scholar 

  46. Graves DT, Cochran DL (1990) Mesenchymal cell growth factors. Crit Rev Oral Biol Med 1:17-36

    PubMed  CAS  Google Scholar 

  47. Gritti A, Frolichsthal-Schoeller P, Galli R, Parati EA, Cova L, Pagano SF, Bjornson CR, Vescovi AL (1999) Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J Neurosci 19:3287-3297

    PubMed  CAS  Google Scholar 

  48. Gualandris A, Rusnati M, Belleri M, Nelli EE, Bastaki M, Molinari-Tosatti MP, Bonardi F, Parolini S, Albini A, Morbidelli L, Ziche M, Corallini A, Possati L, Vacca A, Ribatti D, Presta M (1996) Basic fibroblast growth factor overexpression in endothelial cells: an autocrine mechanism for angiogenesis and angioproliferative diseases. Cell Growth Differ 7:147-160

    PubMed  CAS  Google Scholar 

  49. Hammacher A, Hellman U, Johnsson A, Ostman A, Gunnarsson K, Westermark B, Wasteson A, Heldin CH (1988) A major part of platelet-derived growth factor purified from human platelets is a heterodimer of one A and one B chain. J Biol Chem 263:16493-16498

    PubMed  CAS  Google Scholar 

  50. Harrison RD, Gratzer PF (2005) Effect of extraction protocols and epidermal growth factor on the cellular repopulation of decellularized anterior cruciate ligament allografts. J Biomed Mater Res A 75:841-854

    PubMed  Google Scholar 

  51. Hart CE, Bowen-Pope DF (1990) Platelet-derived growth factor receptor: current views of the two-subunit model. J Invest Dermatol 94:53S-57S

    PubMed  CAS  Google Scholar 

  52. He ZP, Tan WQ, Tang YF, Feng MF (2003) Differentiation of putative hepatic stem cells derived from adult rats into mature hepatocytes in the presence of epidermal growth factor and hepatocyte growth factor. Differentiation 71:281-290

    PubMed  CAS  Google Scholar 

  53. Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465-471

    PubMed  CAS  Google Scholar 

  54. Hirst SJ, Barnes PJ, Twort CH (1996) PDGF isoform-induced proliferation and receptor expression in human cultured airway smooth muscle cells. Am J Physiol 270:L415-428

    PubMed  CAS  Google Scholar 

  55. Hunziker EB, Driesang IM, Morris EA (2001) Chondrogenesis in cartilage repair is induced by members of the transforming growth factor-beta superfamily. Clin Orthop Relat Res S171-181

    Google Scholar 

  56. Igai H, Chang SS, Gotoh M, Yamamoto Y, Misaki N, Okamoto T, Yamamoto M, Tabata Y, Yokomise H (2006) Regeneration of canine tracheal cartilage by slow release of basic fibroblast growth factor from gelatin sponge. Asaio J 52:86-91

    PubMed  CAS  Google Scholar 

  57. Igai H, Yamamoto Y, Chang SS, Yamamoto M, Tabata Y, Yokomise H (2007) Tracheal cartilage regeneration by slow release of basic fibroblast growth factor from a gelatin sponge. J Thorac Cardiovasc Surg 134:170-175

    PubMed  Google Scholar 

  58. Im GI, Jung NH, Tae SK (2006) Chondrogenic differentiation of mesenchymal stem cells isolated from patients in late adulthood: the optimal conditions of growth factors. Tissue Eng 12:527-536

    PubMed  CAS  Google Scholar 

  59. Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, Tateishi T, Tanaka J, Bunyaratvej A (2004) Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun 320:914-919

    PubMed  CAS  Google Scholar 

  60. Janssens K, ten Dijke P, Janssens S, Van Hul W (2005) Transforming growth factor-beta1 to the bone. Endocr Rev 26:743-774

    PubMed  CAS  Google Scholar 

  61. Jaye M, Schlessinger J, Dionne CA (1992) Fibroblast growth factor receptor tyrosine kinases: molecular analysis and signal transduction. Biochim Biophys Acta 1135:185-199

    PubMed  CAS  Google Scholar 

  62. Jenner JM, van Eijk F, Saris DB, Willems WJ, Dhert WJ, Creemers LB (2007) Effect of transforming growth factor-beta and growth differentiation factor-5 on proliferation and matrix production by human bone marrow stromal cells cultured on braided poly lactic-co-glycolic Acid scaffolds for ligament tissue engineering. Tissue Eng 13:1573-1582

    PubMed  CAS  Google Scholar 

  63. Jin Q, Anusaksathien O, Webb SA, Printz MA, Giannobile WV (2004) Engineering of tooth-supporting structures by delivery of PDGF gene therapy vectors. Mol Ther 9:519-526

    PubMed  CAS  Google Scholar 

  64. Johnson DE, Williams LT (1993) Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 60:1-41

    PubMed  CAS  Google Scholar 

  65. Jones AL, Bucholz RW, Bosse MJ, Mirza SK, Lyon TR, Webb LX, Pollak AN, Golden JD, Valentin-Opran A (2006) Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. A randomized, controlled trial. J Bone Joint Surg Am 88:1431-1441

    PubMed  Google Scholar 

  66. Kakudo N, Shimotsuma A, Kusumoto K (2007) Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells. Biochem Biophys Res Commun 359:239-244

    PubMed  CAS  Google Scholar 

  67. Khalil N (1999) TGF-beta: from latent to active. Microbes Infect 1:1255-1263

    PubMed  CAS  Google Scholar 

  68. Klagsbrun M (1990) The affinity of fibroblast growth factors (FGFs) for heparin; FGF-heparan sulfate interactions in cells and extracellular matrix. Curr Opin Cell Biol 2:857-863

    PubMed  CAS  Google Scholar 

  69. Koay EJ, Hoben GM, Athanasiou KA (2007) Tissue Engineering with Chondrogenically-differentiated Human Embryonic Stem Cells. Stem Cells

    Google Scholar 

  70. Korchynsky O, ten Dijke P (2002) Bone morphogenetic protein receptors and their nuclear effectors in bone formation. In: Vukicevic S, Sampath KT (eds) Bone morphogenetic proteins: from laboratory to clinical practice. Birkhäuser, Basel, pp 31-60

    Google Scholar 

  71. Kubler NR, Wurzler K, Reuther JF, Faller G, Sieber E, Kirchner T, Sebald W (1999) EHBMP-2. Initial BMP analog with osteoinductive properties. Mund Kiefer Gesichtschir 3 Suppl 1:S134-S139

    Google Scholar 

  72. Lawrence DA (2001) Latent-TGF-beta: an overview. Mol Cell Biochem 219:163-170

    PubMed  CAS  Google Scholar 

  73. Lee DC, Fenton SE, Berkowitz EA, Hissong MA (1995) Transforming growth factor alpha: expression, regulation, and biological activities. Pharmacol Rev 47:51-85

    PubMed  CAS  Google Scholar 

  74. Lee JY, Kim KH, Shin SY, Rhyu IC, Lee YM, Park YJ, Chung CP, Lee SJ (2006) Enhanced bone formation by transforming growth factor-beta1-releasing collagen/chitosan microgranules. J Biomed Mater Res A 76:530-539

    PubMed  Google Scholar 

  75. Lee SJ (2000) Cytokine delivery and tissue engineering. Yonsei Med J 41:704-719

    PubMed  CAS  Google Scholar 

  76. Lee YM, Park YJ, Lee SJ, Ku Y, Han SB, Klokkevold PR, Chung CP (2000) The bone regenerative effect of platelet-derived growth factor-BB delivered with a chitosan/tricalcium phosphate sponge carrier. J Periodontol 71:418-424

    PubMed  CAS  Google Scholar 

  77. Lieb E, Milz S, Vogel T, Hacker M, Dauner M, Schulz MB (2004) Effects of transforming growth factor beta1 on bonelike tissue formation in three-dimensional cell culture. I. Culture conditions and tissue formation. Tissue Eng 10:1399-1413

    PubMed  CAS  Google Scholar 

  78. Lieb E, Vogel T, Milz S, Dauner M, Schulz MB (2004) Effects of transforming growth factor beta1 on bonelike tissue formation in three-dimensional cell culture. II: Osteoblastic differentiation. Tissue Eng 10:1414-1425

    PubMed  CAS  Google Scholar 

  79. Lieberman JR, Daluiski A, Einhorn TA (2002) The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am 84-A:1032-1044

    PubMed  Google Scholar 

  80. Linkhart TA, Mohan S, Baylink DJ (1996) Growth factors for bone growth and repair: IGF, TGF beta and BMP. Bone 19:1S-12S

    PubMed  CAS  Google Scholar 

  81. Longobardi L, O’Rear L, Aakula S, Johnstone B, Shimer K, Chytil A, Horton WA, Moses HL, Spagnoli A (2006) Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res 21:626-636

    PubMed  CAS  Google Scholar 

  82. Lu L, Yaszemski MJ, Mikos AG (2001) TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function. J Bone Joint Surg Am 83-A Suppl 1:S82-91

    PubMed  Google Scholar 

  83. Lynch SE, Wisner-Lynch L, Nevins M, Nevins ML (2006) A new era in periodontal and periimplant regeneration: use of growth-factor enhanced matrices incorporating rhPDGF. Compend Contin Educ Dent 27:672-678; quiz 679-680

    PubMed  Google Scholar 

  84. Marcopoulou CE, Vavouraki HN, Dereka XE, Vrotsos IA (2003) Proliferative effect of growth factors TGF-beta1, PDGF-BB and rhBMP-2 on human gingival fibroblasts and periodontal ligament cells. J Int Acad Periodontol 5:63-70

    PubMed  CAS  Google Scholar 

  85. Martin I, Suetterlin R, Baschong W, Heberer M, Vunjak-Novakovic G, Freed LE (2001) Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2D expansion and BMP-2 during 3D cultivation. J Cell Biochem 83:121-128

    PubMed  CAS  Google Scholar 

  86. Massague J (1990) The transforming growth factor-beta family. Annu Rev Cell Biol 6:597-641

    PubMed  CAS  Google Scholar 

  87. Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753-791

    PubMed  CAS  Google Scholar 

  88. Mauck RL, Nicoll SB, Seyhan SL, Ateshian GA, Hung CT (2003) Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng 9:597-611

    PubMed  CAS  Google Scholar 

  89. Meaney Murray M, Rice K, Wright RJ, Spector M (2003) The effect of selected growth factors on human anterior cruciate ligament cell interactions with a three-dimensional collagen-GAG scaffold. J Orthop Res 21:238-244

    PubMed  CAS  Google Scholar 

  90. Meyer-Ingold W, Eichner W (1995) Platelet-derived growth factor. Cell Biol Int 19:389-398

    PubMed  CAS  Google Scholar 

  91. Michalopoulos GK, Bowen WC, Zajac VF, Beer-Stolz D, Watkins S, Kostrubsky V, Strom SC (1999) Morphogenetic events in mixed cultures of rat hepatocytes and nonparenchymal cells maintained in biological matrices in the presence of hepatocyte growth factor and epidermal growth factor. Hepatology 29:90-100

    PubMed  CAS  Google Scholar 

  92. Minamide A, Yoshida M, Kawakami M, Okada M, Enyo Y, Hashizume H, Boden SD (2007) The effects of bone morphogenetic protein and basic fibroblast growth factor on cultured mesenchymal stem cells for spine fusion. Spine 32:1067-1071

    PubMed  Google Scholar 

  93. Miura Y, Parvizi J, Fitzsimmons JS, O’Driscoll SW (2002) Brief exposure to high-dose transforming growth factor-beta1 enhances periosteal chondrogenesis in vitro: a preliminary report. J Bone Joint Surg Am 84-A:793-799

    PubMed  Google Scholar 

  94. Miyazono K (2000) TGF-beta signaling by Smad proteins. Cytokine Growth Factor Rev 11:15-22

    PubMed  CAS  Google Scholar 

  95. Miyazono K, Kusanagi K, Inoue H (2001) Divergence and convergence of TGF-beta/BMP signaling. J Cell Physiol 187:265-276

    PubMed  CAS  Google Scholar 

  96. Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L (1986) Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci U S A 83:7297-7301

    PubMed  CAS  Google Scholar 

  97. Moreau J, Chen J, Kaplan D, Altman G (2006) Sequential growth factor stimulation of bone marrow stromal cells in extended culture. Tissue Eng 12:2905-2912

    PubMed  CAS  Google Scholar 

  98. Na K, Kim SW, Sun BK, Woo DG, Yang HN, Chung HM, Park KH (2007) Osteogenic differentiation of rabbit mesenchymal stem cells in thermo-reversible hydrogel constructs containing hydroxyapatite and bone morphogenic protein-2 (BMP-2). Biomaterials 28:2631-2637

    PubMed  CAS  Google Scholar 

  99. Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. Embo J 16:5353-5362

    PubMed  CAS  Google Scholar 

  100. Nevins M, Giannobile WV, McGuire MK, Kao RT, Mellonig JT, Hinrichs JE, McAllister BS, Murphy KS, McClain PK, Nevins ML, Paquette DW, Han TJ, Reddy MS, Lavin PT, Genco RJ, Lynch SE (2005) Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: results of a large multicenter randomized controlled trial. J Periodontol 76:2205-2215

    PubMed  CAS  Google Scholar 

  101. Nimni ME (1997) Polypeptide growth factors: targeted delivery systems. Biomaterials 18:1201-1225

    PubMed  CAS  Google Scholar 

  102. Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2:REVIEWS3005

    PubMed  CAS  Google Scholar 

  103. Pandit A, Ashar R, Feldman D, Thompson A (1998) Investigation of acidic fibroblast growth factor delivered through a collagen scaffold for the treatment of full-thickness skin defects in a rabbit model. Plast Reconstr Surg 101:766-775

    PubMed  CAS  Google Scholar 

  104. Papadopoulos CE, Dereka XE, Vavouraki EN, Vrotsos IA (2003) In vitro evaluation of the mitogenic effect of platelet-derived growth factor-BB on human periodontal ligament cells cultured with various bone allografts. J Periodontol 74:451-457

    PubMed  CAS  Google Scholar 

  105. Parikh SN (2002) Bone graft substitutes: past, present, future. J Postgrad Med 48:142-148

    PubMed  CAS  Google Scholar 

  106. Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG (2005) Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 26:7095-7103

    PubMed  CAS  Google Scholar 

  107. Piek E, Heldin CH, Ten Dijke P (1999) Specificity, diversity, and regulation in TGF-beta superfamily signaling. Faseb J 13:2105-2124

    PubMed  CAS  Google Scholar 

  108. Reddi AH (2000) Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials. Tissue Eng 6:351-359

    PubMed  CAS  Google Scholar 

  109. Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175:1-13

    PubMed  CAS  Google Scholar 

  110. Ribatti D, Nico B, Vacca A, Roncali L, Presta M (1999) Endogenous and exogenous fibroblast growth factor-2 modulate wound healing in the chick embryo chorioallantoic membrane. Angiogenesis 3:89-95

    PubMed  CAS  Google Scholar 

  111. Richard C, Liuzzo JP, Moscatelli D (1995) Fibroblast growth factor-2 can mediate cell attachment by linking receptors and heparan sulfate proteoglycans on neighboring cells. J Biol Chem 270:24188-24196

    PubMed  CAS  Google Scholar 

  112. Rickard DJ, Sullivan TA, Shenker BJ, Leboy PS, Kazhdan I (1994) Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BMP-2. Dev Biol 161:218-228

    PubMed  Google Scholar 

  113. Ripamonti U, Crooks J, Rueger DC (2001) Induction of bone formation by recombinant human osteogenic protein-1 and sintered porous hydroxyapatite in adult primates. Plast Reconstr Surg 107:977-988

    PubMed  CAS  Google Scholar 

  114. Rose FR, Hou Q, Oreffo RO (2004) Delivery systems for bone growth factors - the new players in skeletal regeneration. J Pharm Pharmacol 56:415-427

    PubMed  CAS  Google Scholar 

  115. Rotwein P (1991) Structure, evolution, expression and regulation of insulin-like growth factors I and II. Growth Factors 5:3-18

    PubMed  CAS  Google Scholar 

  116. Rueger DC (2002) Biochemistry of bone morphogenetic proteins. In: Vukicevic S, Sampath KT (eds) Bone morphogenetic proteins: from laboratory to clinical practice. Birkhäuser, Basel, pp 1-18

    Google Scholar 

  117. Sales VL, Engelmayr GC Jr, Mettler BA, Johnson JA Jr, Sacks MS, Mayer JE, Jr. (2006) Transforming growth factor-beta1 modulates extracellular matrix production, proliferation, and apoptosis of endothelial progenitor cells in tissue-engineering scaffolds. Circulation 114:I193-199

    PubMed  Google Scholar 

  118. Sampath TK, Reddi AH (1981) Dissociative extraction and reconstitution of extracellular matrix components involved in local bone differentiation. Proc Natl Acad Sci U S A 78:7599-7603

    PubMed  CAS  Google Scholar 

  119. Sampath TK, Muthukumaran N, Reddi AH (1987) Isolation of osteogenin, an extracellular matrix-associated, bone-inductive protein, by heparin affinity chromatography. Proc Natl Acad Sci U S A 84:7109-7113

    PubMed  CAS  Google Scholar 

  120. Satija NK, Gurudutta GU, Sharma S, Afrin F, Gupta P, Verma YK, Singh VK, Tripathi RP (2007) Mesenchymal stem cells: molecular targets for tissue engineering. Stem Cells Dev 16:7-23

    PubMed  CAS  Google Scholar 

  121. Schmid C (1995) Insulin-like growth factors. Cell Biol Int 19:445-457

    PubMed  CAS  Google Scholar 

  122. Seeherman H, Wozney JM (2005) Delivery of bone morphogenetic proteins for orthopedic tissue regeneration. Cytokine Growth Factor Rev 16:329-345

    PubMed  CAS  Google Scholar 

  123. Slavin J (1995) Fibroblast growth factors: at the heart of angiogenesis. Cell Biol Int 19:431-444

    PubMed  CAS  Google Scholar 

  124. Sleeman M, Fraser J, McDonald M, Yuan S, White D, Grandison P, Kumble K, Watson JD, Murison JG (2001) Identification of a new fibroblast growth factor receptor, FGFR5. Gene 271:171-182

    PubMed  CAS  Google Scholar 

  125. Stewart CE, Rotwein P (1996) Growth, differentiation, and survival: multiple physiological functions for insulin-like growth factors. Physiol Rev 76:1005-1026

    PubMed  CAS  Google Scholar 

  126. ten Dijke P, Yamashita H, Ichijo H, Franzen P, Laiho M, Miyazono K, Heldin CH (1994) Characterization of type I receptors for transforming growth factor-beta and activin. Science 264:101-104

    PubMed  Google Scholar 

  127. Tropepe V, Sibilia M, Ciruna BG, Rossant J, Wagner EF, van der Kooy D (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208:166-188

    PubMed  CAS  Google Scholar 

  128. Ullrich A, Berman CH, Dull TJ, Gray A, Lee JM (1984) Isolation of the human insulin-like growth factor I gene using a single synthetic DNA probe. Embo J 3:361-364

    PubMed  CAS  Google Scholar 

  129. Urist MR (1965) Bone: formation by autoinduction. Science 150:893-899

    PubMed  CAS  Google Scholar 

  130. Veilleux N, Spector M (2005) Effects of FGF-2 and IGF-1 on adult canine articular chondrocytes in type II collagen-glycosaminoglycan scaffolds in vitro. Osteoarthritis Cartilage 13:278-286

    PubMed  CAS  Google Scholar 

  131. Wagner TU (2007) Bone morphogenetic protein signaling in stem cells–one signal, many consequences. Febs J 274:2968-2976

    PubMed  CAS  Google Scholar 

  132. Warnke PH, Springer IN, Wiltfang J, Acil Y, Eufinger H, Wehmoller M, Russo PA, Bolte H, Sherry E, Behrens E, Terheyden H (2004) Growth and transplantation of a custom vascularised bone graft in a man. Lancet 364:766-770

    PubMed  CAS  Google Scholar 

  133. Wei G, Jin Q, Giannobile WV, Ma PX (2006) Nano-fibrous scaffold for controlled delivery of recombinant human PDGF-BB. J Control Release 112:103-110

    PubMed  CAS  Google Scholar 

  134. Weisser J, Rahfoth B, Timmermann A, Aigner T, Brauer R, von der Mark K (2001) Role of growth factors in rabbit articular cartilage repair by chondrocytes in agarose. Osteoarthritis Cartilage 9 Suppl A:S48-S54

    PubMed  Google Scholar 

  135. Westermark B, Heldin CH (1993) Platelet-derived growth factor. Structure, function and implications in normal and malignant cell growth. Acta Oncol 32:101-105

    PubMed  CAS  Google Scholar 

  136. Westreich R, Kaufman M, Gannon P, Lawson W (2004) Validating the subcutaneous model of injectable autologous cartilage using a fibrin glue scaffold. Laryngoscope 114:2154-2160

    PubMed  CAS  Google Scholar 

  137. Wiedlocha A, Sorensen V (2004) Signaling, internalization, and intracellular activity of fibroblast growth factor. Curr Top Microbiol Immunol 286:45-79

    PubMed  CAS  Google Scholar 

  138. Woo YK, Kwon SY, Lee HS, Park YS (2007) Proliferation of anterior cruciate ligament cells in vitro by photo-immobilized epidermal growth factor. J Orthop Res 25:73-80

    PubMed  CAS  Google Scholar 

  139. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528-1534

    PubMed  CAS  Google Scholar 

  140. Wozney JM, Seeherman HJ (2004) Protein-based tissue engineering in bone and cartilage repair. Curr Opin Biotechnol 15:392-398

    PubMed  CAS  Google Scholar 

  141. Wrana JL, Attisano L, Wieser R, Ventura F, Massague J (1994) Mechanism of activation of the TGF-beta receptor. Nature 370:341-347

    PubMed  CAS  Google Scholar 

  142. Wrana JL, Attisano L (2000) The Smad pathway. Cytokine Growth Factor Rev 11:5-13

    PubMed  CAS  Google Scholar 

  143. Würzler KK, Heisterkamp M, Böhm H, Kübler NR, Sebald W, Reuther JF (2004) Mandibular reconstruction with autologous bone and osseoinductive implant in the Gottingen minipig. Mund Kiefer Gesichtschir 8:75-82

    PubMed  Google Scholar 

  144. Xue L, Tassiopoulos AK, Woloson SK, Stanton DL, Jr., Ms CS, Hampton B, Burgess WH, Greisler HP (2001) Construction and biological characterization of an HB-GAM/FGF-1 chimera for vascular tissue engineering. J Vasc Surg 33:554-560

    Google Scholar 

  145. Yamaoka H, Asato H, Ogasawara T, Nishizawa S, Takahashi T, Nakatsuka T, Koshima I, Nakamura K, Kawaguchi H, Chung UI, Takato T, Hoshi K (2006) Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials. J Biomed Mater Res A 78:1-11

    PubMed  Google Scholar 

  146. Yasuda A, Kojima K, Tinsley KW, Yoshioka H, Mori Y, Vacanti CA (2006) In vitro culture of chondrocytes in a novel thermoreversible gelation polymer scaffold containing growth factors. Tissue Eng 12:1237-1245

    PubMed  CAS  Google Scholar 

  147. Yoon ST, Boden SD (2002) Osteoinductive molecules in orthopaedics: basic science and preclinical studies. Clin Orthop Relat Res 33-43

    Google Scholar 

  148. Zhang Y, Wang Y, Shi B, Cheng X (2007) A platelet-derived growth factor releasing chitosan/coral composite scaffold for periodontal tissue engineering. Biomaterials 28:1515-1522

    PubMed  CAS  Google Scholar 

  149. Zhu Z, Lee CS, Tejeda KM, Giannobile WV (2001) Gene transfer and expression of platelet-derived growth factors modulate periodontal cellular activity. J Dent Res 80:892-897

    PubMed  CAS  Google Scholar 

  150. Zofkova I (2003) Pathophysiological and clinical importance of insulin-like growth factor-I with respect to bone metabolism. Physiol Res 52:657-679

    PubMed  CAS  Google Scholar 

  151. zur Nieden NI, Kempka G, Rancourt DE, Ahr HJ (2005) Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev Biol 5:1

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Depprich, R. (2009). Biomolecule Use in Tissue Engineering. In: Meyer, U., Handschel, J., Wiesmann, H., Meyer, T. (eds) Fundamentals of Tissue Engineering and Regenerative Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77755-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77755-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77754-0

  • Online ISBN: 978-3-540-77755-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics