Skip to main content

Wavelength Swept Lasers

  • Chapter
Book cover Optical Coherence Tomography

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

In optical interferometric metrology, the wavelength of light serves as a reference for length. At a given optical wavelength, an interference signal varies as a sinusoidal function of distance with a period equal to the wavelength. Although this approach offers unrivaled precision, the periodic signal results in a 2π ambiguity for measurement of lengths greater than one wavelength. In optical coherence tomography (OCT), one wishes to determine light scattering distances and distribution within a sample, but without the ambiguity. To accomplish this, OCT is based on interferometry using many optical wavelengths, each serving as a “ruler” with different periodicity. OCT traditionally has used broadband light sources providing a wide range of wavelengths, all simultaneously. Alternatively, a tunable light source emitting one wavelength at a time, rapidly swept over a broad spectral range, can also be used to achieve the absolute ranging capability in OCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall PTR, Upper Saddle River, NJ, 1998).

    Google Scholar 

  2. T. Vo-Dinh, Biomedical Photonics Handbook (CRC Press, Boca Raton, FL, 2003).

    Google Scholar 

  3. A. Yariv, P. Yeh, A. Yariv, Photonics : Optical Electronics in Modern Communications (Oxford University Press, New York, 2007).

    Google Scholar 

  4. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).

    Book  Google Scholar 

  5. A.E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).

    Google Scholar 

  6. E. Hecht, Optics (Addison-Wesley, Reading, MA, 2002).

    Google Scholar 

  7. S.R. Chinn, E.A. Swanson, J.G. Fujimoto, Opt. Lett. 22, 340 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. K. Liu, M.G. Littman, Opt. Lett. 6, 117 (1981).

    Article  CAS  PubMed  Google Scholar 

  9. S.H. Yun, D.J. Richardson, D.O. Culverhouse, B.Y. Kim, IEEE J. Selected Topics Quantum Electron. 3, 1087 (1997).

    Article  CAS  Google Scholar 

  10. A. Bilenca, S.H. Yun, G.J. Tearney, B.E. Bouma, Opt. Lett. 31, 760 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. S.H. Yun, Opt. Lett. 30, 2660 (2005).

    Article  PubMed  Google Scholar 

  12. S.H. Yun, C. Boudoux, G.J. Tearney, B.E. Bouma, Opt. Lett. 28, 1981 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. R. Huber, M. Wojtkowski, J.G. Fujimoto, J.Y. Jiang, A.E. Cable, Opt. Express 13,10523 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. W.Y. Oh, S.H. Yun, G.J. Tearney, B.E. Bouma, Opt. Lett. 30, 3159 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. R. Huber, M. Wojtkowski, J.G. Fujimoto, Opt. Express 14, 3225 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. S.T. Sanders, Appl. Phys. B Lasers Opt. 75, 799 (2002).

    Article  CAS  Google Scholar 

  17. S. Moon, D.Y. Kim, Opt. Express 14, 11575 (2006).

    Article  PubMed  Google Scholar 

  18. J.W. Walewski, M.R. Borden, S.T. Sanders, Appl. Phys. B Lasers Opt. 79, 937 (2004).

    Article  CAS  Google Scholar 

  19. S. Yamashita, M. Asano, Opt. Express 14, 9299 (2006).

    Article  PubMed  Google Scholar 

  20. E.C.W. Lee, J.F. de Boer, M. Mujat, H. Lim, S.H. Yun, Opt. Express 14, 4403 (2006).

    Article  PubMed  Google Scholar 

  21. H. Lim et al., Opt. Express 14, 5937 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. M.E. Klein et al., Opt. Lett. 28, 920 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. M.A. Choma, K. Hsu, J.A. Izatt, J. Biomed. Opt. 10, 044009 (2005).

    Google Scholar 

  24. R. Huber, M. Wojtkowski, K. Taira ,J.G. Fujimoto, K. Hsu, Opt. Express 13, 3513 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. B. Golubovic, B.E. Bouma, G.J. Tearney, J.G. Fujimoto, Opt. Lett. 22, 1704 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. P.F. Wysocki, M.J.F. Digonnet, B.Y. Kim, Opt. Lett. 15, 879 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. J.M. Telle, C.L. Tang, Appl. Phys. Lett. 24, 85 (1974).

    Article  CAS  Google Scholar 

  28. J.M. Telle, C.L. Tang, Appl. Phys. Lett. 26, 572 (1975).

    Article  Google Scholar 

  29. R. Huber, D.C. Adler, J.G. Fujimoto, Opt. Lett. 31, 2975 (2006).

    Article  PubMed  Google Scholar 

  30. J.W. Walewski, S.T. Sanders, Appl. Phys. B Lasers Opt. 79, 415 (2004).

    CAS  Google Scholar 

  31. S.H. Yun et al., Nat. Med. 12, 1429 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. C. Boudoux et al., Opt. Express 13, 8214 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yun, S.H., Bouma, B.E. (2008). Wavelength Swept Lasers. In: Drexler, W., Fujimoto, J.G. (eds) Optical Coherence Tomography. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77550-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77550-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77549-2

  • Online ISBN: 978-3-540-77550-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics