Skip to main content

Carbide-free Bainite/Martensite (CFB/M) Duplex Phase Steel

  • Chapter
Book cover Ultra-Fine Grained Steels
  • 2422 Accesses

Abstract

To achieve energy and raw materials conservation, the world focuses attention upon researching and developing structure steel with ultra high tensile strength. Compared with ordinary structure steel, ultra-high strength low alloy (UHSLA) steel has higher tensile strength (Rm≥1500 MPa) but lower toughness. Because of low alloy elements, simple hot working process and relative low cost, UHSLA is widely used in spaceflight, aviation and conventional weapons industries. The process of ultimate heat treatment of this type of steel involves “quenching + tempering” or “austempering + tempering”, Austempering + tempering produces tempered martensite or low bainite + tempered martensite duplex phase microstructure, usually used for making component under a larger stress at room temperature (like aircraft undercarriage, gun barrel and bulletproof steel plate). However, during the process of application, because UHSLA steel has not high enough toughness, brittle fracture often occurs, which results in short service life (Fan et al, 2006). The components made of UHSLA steel for dynamic and huge impact load have higher requirement of fatigue life. But medium or high carbon ultrahigh strength low alloy steel is usually low in toughness. It is shown in the recent research that UHSLA steel with tempered martensite structure often breaks in brittle manner due to insufficient toughness. When fatigue cycle is about 107 or more, the initiation of fatigue fracture change to inside materials and produce model ladder S-N curve, which results in further lowering fatigue limit (Wang et al, 2002).

The experimental materials used in Chapter 7 are listed in a appendix at the end of Chapter 7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfons H M Krom, Bakker A D (2000) Hydrogen Trapping Models in Steel. Metall. Trans. 31B(12):1475–1482

    CAS  Google Scholar 

  • Asahi Hitoshi, Hirakami Daisuke, Yamasaki Shingo (2003) Hydrogen trapping behavior in vanadium-added steel. ISIJ International 43(4):527–533

    Article  CAS  Google Scholar 

  • Bai Bingzhe, Cui Wenlong, Gu Jialin, Liu Dongyu (2006) Fatigue properties of carbide-free bainite and martensite mixed microstructure high strength steel. In: The 3rd International Conference on Advanced Structural Steels. Gyeongju, Korea, August 22–24, 2006

    Google Scholar 

  • Bandyopadhyay N, Kameda Jun, Mcmahon CJJR. (1983) Hydrogen Induced Cracking in 4340-Type Steel: Effect of Composition, Yield Strength and H2 Pressure. Metall. Trans. A. 14(5):881–888

    CAS  Google Scholar 

  • Beachem C D, Yoder G R (1973) Elastic-Plastic Fracture by Homogeneous Microvoid Coalescence Tearing Alone Alternation Shear Planes. Metallurgical Transactions 4(4):45–1153

    Article  Google Scholar 

  • Beevers C J, Carlson R L (1984) A Consideration of the Significant Factors Controlling Fatigue Thresholds. In: Fatigue Crack Growth 30 Years of Progress, Proceedings of Conference on Fatigue Crack Growth Cambridge, UK, 20 September 1984, Pergamon Press, 89–101

    Google Scholar 

  • Bhadeshia H K D H, Edmonds D V (1979) The Bainite Transformation in a Silicon Steel. Metall. Trans. A 10:895–907

    Article  Google Scholar 

  • Bhadeshia H K D H, Edmonds D V (1983) Bainite in Silicon Steels. New Composition-Property Approach Part2. Metal Science 17(9):420–425

    Article  CAS  Google Scholar 

  • Brass A M, Guillon F, Vivet S (2004) Quantification of hydrogen diffusion and trapping in 2.25Cr-lMo and 3Cr-lMo-V steels with the electrochemical permeation technique and melt extractions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, v 35 A, n 5, May, 2004, p 1449–1464

    Google Scholar 

  • Chang Kaidi (2002) Study on Delayed Fracture Mechanism of Bainite/Martensite Duplex Phase High Strength Steel [Doctoral Thesis], Beijing: Tsinghua University, April, 2002

    Google Scholar 

  • Chattoraj I, Tiwari S B, Ray A K, A Mitra, S K Das (1995) Corrosion Science 37(6):885–896

    Article  CAS  Google Scholar 

  • Choo W Y, Lee J Y (1982) Hydrogen Trapping Phenomena in Carbon Steel. Journal of materials Science 17:1930–1938

    Article  CAS  ADS  Google Scholar 

  • Choo W Y, Lee J Y (1982) Thermal Analysis of Trapped Hydrogen in Pure Iron. Metall.Trans. 13A:135–140

    CAS  Google Scholar 

  • Chu Wuyang, Li Shiqiong, Xiao Jimei (1980) Study on High Strength Liquid Steel Medium Stress Corrosion. Journal of Metallkunde 16(2):179–189

    CAS  Google Scholar 

  • Chu Wuyang (1988) Hydrogen Damage and Delayed Fracture. Beijing: Metallurgical Industry Press,1988, 214

    Google Scholar 

  • Cui Wenlong, Gu Jialin, Bai Bingzhe, Fang Hongsheng (2007) Study of ultra-long life fatigue of high strength steel with duplex-phase of carbide-free bainite and martensite. Materials Science Forum 539–543, 3: 4532–4537

    Article  Google Scholar 

  • Liu D Y, Yang Z G, Bai B Z, Fang H S, Yang W Y (2003) The properties of 1500MPa grade alloy steel with carbide free bainite/martensite mixed microstructures. ISIJ International 43(3): 433–437

    Article  CAS  Google Scholar 

  • Devanathan M A V, Stachurski Z (1962) The Adsorption and Diffusion of lectrolytic Hydrogen in Palladium, Proc. Roy. Soc. A270:90–102

    ADS  Google Scholar 

  • Dutta V B, Suresh S, Ritchie R O (1984) Fatigue Crack Propagation in Dual-Phase Steels: Effects of Ferritic-Martensitic Microstructures on Crack Path Morpholigy. Author Affiliation: Lawrence Berkeley Lab, Materials & Molecular Research Div, Berkeley, Calif, USA Source: Metallurgical Transactions A. Jun 1984, vol.15(6): 1193–1207

    ADS  Google Scholar 

  • Fan Changgang, Dong Han, Yong Qilong, Weng Yuqing, et al (2006) Research Development of Ultrahigh Strength Low Alloy Steels. Materials for mechanical engineering 30(8):1–4

    CAS  Google Scholar 

  • Fang Hongsheng, Liu Dongyu, Bai Bingzhe (2001) Latest Development of CFB/M Duplex Phase Steel. Thermal Treatment of Metals 26(10): 6–11

    Google Scholar 

  • Fang Hongsheng, Tan Zhunli, Bai Bingzhe (2005) Characteristics of Mn-series Bainitic Steels and Its Recent Development. Iron & steel supplement Vol.40: 259–263

    Google Scholar 

  • Fang Hongsheng, Zheng Yankang, Chen Xiuyun (1988). Air-cooled Bainite Steel. New Materials and Technology 5:3–8

    Google Scholar 

  • Fleck N A (1984) Fatigue crack Growth-the Complications. Fatigue Crack Growth 30 Years of Progress, Proceedings of Conference on Fatigue Crack Growth Cambridge, UK, 20 September 1984: Pergamon Press 76–78

    Google Scholar 

  • Fleck N A, Smith R A (1982) Crack Closure is it Jest a Surface Phenomenon? International Journal of Fatigue 1982:157-160. Correction in International Journal of Fatigue. October, 1982:234–238

    Google Scholar 

  • Fu Ming, Qiu Yaojian (1988) Effect of Molybdenum on Tempering Martensitic Brittleness of Medial Carbide Silicon-manganese Steel. Iron and Steel 23(7):36–41

    CAS  Google Scholar 

  • Gojic Mirko, Ladislav Kosec (1997) The Susceptibility to the Hydrogen Embrittlement of Low Alloy Cr and CrMo Steels. ISIJ International 37(4):412–418

    Article  CAS  Google Scholar 

  • Gu Jialin (1985) Discussion on Body-centered Cubic(BBC) Alloy Induced Hydrogen Fracture Process: [Doctor’s degree Themes]; Beijing: Tsinghua University Department of Materials Science & Engineering, 1985

    Google Scholar 

  • Gu J L, Wei D Y, Chang K D, Liu D Y, Fang H S, Bai B Z, Yang Z Y, Zhang W Z (2003) A Novel 1500MPa Economic High Strength Steel. Materials Science Forum 426–432: 1475–1480

    Article  Google Scholar 

  • Gui Zhou, Tan Zhun li, Bai Bing zhe (2006) Effect of Silicon on Microstructure and Properties of Low-Carbon Si-Mn-Cr-Mo Bainite Steel. Heat Treatment of Metals 31(5):4–6

    CAS  Google Scholar 

  • He Jianhong, Tang Xiangyun, Chen Nanping (1989) Diffusion of Hydrogen in (α+γ) Duplex Stainless Steel. Journal of Metallkunde 25(1):A42–A47

    CAS  Google Scholar 

  • He Jianhong (1988) Study on Hydrogen Induced Crack of Ferrite-Austensite Duplex Stainless Steel, [Doctor’s degree Themes]; Beijing: Tsinghua University Department of Materials Science & Engineering, 1988

    Google Scholar 

  • Hirth J P, Mehl Medalist R F (1980) Effects of Hydrogen on the Properties of Iron and Steel. Metall. Trans. 11(6): 861–890

    Article  Google Scholar 

  • Hu Daxin, Wang Jiajun, Yang Zhigang (1995) Transformation Dynamics and Structural Study on Mn-B Air Cooled Bainite Steel. Automobile Technology (l):27–30

    Google Scholar 

  • Huang Weigang, Xu Rong, Fang Hongsheng (1997) Impact Roughness of Low & Medial Carbon Silicon Air-cooled Bainite Steel. Journal of Iron and Steel Study (2):31–34

    Google Scholar 

  • Hui Weijun, Donghan, Wang Maoqiu, Chen Silian, Weng Yuqing. (2002) Effect of Vanadium on delayed fracture resistance properties of high strength steel. Metal heat treatment 27(1): 10–12

    CAS  Google Scholar 

  • Hui Weijun, Donghan, Wang Maoqiu, Chen Silian, Weng Yuqing (2002) Effect of thermal treatment on delayed fracture resistance properties of 42CrMo steel. Acta Metallurgica Sinica 38(7):715–719

    Google Scholar 

  • Kang M K, Sun J L, Yang Q M (1990) High-Temperature Transmission Electron Microscopy In Situ Study of Lower Bainite Carbide Precipitation. Metall. Trans. A 21: 853–858

    Google Scholar 

  • Kikuta Yoneo Araki Takao (1981) Microscopic Redistribution Behaviours of Hydrogen and Fracture Morphology of Hydrogen-Assisted Cracking in High Strength Steel. Hydrogen Effects in Metals. Edited by I M Bernstein and Anthonyw. Thompson. New York, The Metallurgical Society of AIME., 1981, 309–318

    Google Scholar 

  • Kontt J F (1984) Models of Fatigue Crack Wrowth Fatigue Crack Growth 30 Years of Progress. Proceedings of Conference on Fatigue Crack Growth Cambridge, UK,20 September 1984: Pergamon Press. 31–52

    Google Scholar 

  • Lee S M, Lee J Y (1986) The Trapping Transport Phenomena of Hydrogen in Nickel. Metall. Trans. 17A:181–187

    CAS  Google Scholar 

  • Lee Yongwon, Gangloff Richard P (2007) Measurement and modeling of hydrogen environment-assisted cracking of ultra-high-strength steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, v 38 A, n 13:2174–2190

    Article  ADS  CAS  Google Scholar 

  • Li Helin, Zhangyi, Luo Baohuai (1982) Study on Tempering Temperature of 20CrMnSiMoVA and 20SiMn2MoVA steels. Metal heat treatment (8):20–26

    Google Scholar 

  • Li Huilu, Gao Kewei, Qiao Lijie, et al (2001) Threshold Stress Intensity of Hydrogen-Induced Cracking and Stress Corrosion Cracking of High Strength Steel. J. Iron and Steel Res., Int. 8(2):42–46

    CAS  Google Scholar 

  • Liou H Y, Shieh R I, Wei F I, et al (1993) Roles of Microalloying Elements in Hydrogen Induced Cracking Resistant Property of HSLA Steels. Corrosion 49(5):389–398

    Article  CAS  Google Scholar 

  • Liu Cheng, Zhao Zhenbo, Bhole S D (2006) Lathlike upper bainite in a silicon steel. Materials Science and Engineering A 434:289–293

    Article  CAS  Google Scholar 

  • Liu Dongyu (2002) Study on 1500MPa Low Carbon CFB/M Duplex Phase High Strength Steel [Doctoral Thesis]. Beijing: Tsinghua University, April, 2002

    Google Scholar 

  • Liu Dongyu, Xuhong, Yangkun, Bai Bingzhe, Fang Hongsheng (2004) Effect of Bainite /Martensite Duplex Phase Structure on Strength and Roughness of Low-carbon Alloy Steel. Acta metallurgica Sinica 40(8):882–886

    CAS  Google Scholar 

  • Liu Xiaokun, Wang Jianjun, Lu Minxu (1993) Corrosion Fatigue Crack Growth of Martensite and Bainite Structure GC-4 Ultra-High Strength Steel. Journal of Metallkunde B, 29(12):533–539

    Google Scholar 

  • Lunarska E, Nikiforow K, Sitko E (2004) Stress corrosion cracking of bainite 0.3C-lCr-lMn-lSi-lNi type steel in acid rain simulated solution. Materials and Corrosion v 55, n 5:373–380

    Article  CAS  Google Scholar 

  • Manolatos P, Unirec C, Duret Coze J, et al (1988) Electrochemical Permeation of Hydrogen in Pure Iron and Low Alloy Steels. Influence of the Passive Layer Formed on the Exit Side, 4th International Conference, Edited by Pierre Azou, Chen Nanping, Beijing, 1988, May, 9–13

    Google Scholar 

  • McNabb A, Foster P K (1963) A New Analysis of the Diffusion of Hydrogen in Iron and Ferritic Steels. Trans. Aime 227, 618–627

    CAS  Google Scholar 

  • Miihkinen V T T, Edmonds D V (1987) Fracture Toughness of two Experimental High-Strength Bainite Low-Alloy Steel Containing Silicon. Materials Science and Technology 6(3):441–449

    Google Scholar 

  • Murakami Yukitaka, Uemura Yujiro, Natsume Yoshitaka, Miyakawa Susumu (1990) Effect of mean stress on the fatigue strength of high-strength steels containing small defects or nonmetallic inclusions Source. Nippon Kikai Gakkai RonbunshuA.Hen/Transactions of the Japan Society of Mechanical Engineers Part A v 56 n 525: 1076–1581

    Google Scholar 

  • Nam W J, Choi H C (1997) Effects of Silicon, Nickel, and Vanadium on Impact Toughness in Spring Steels. Mater. Sci. &Tech. 13(7): 568–574

    CAS  Google Scholar 

  • Parvathavarthini N, Saroja S, Dayal R K, et al (2001) Studies on Hydrogen Permeability of 2.25%Cr-1% Mo Ferritic Steel: Correlation with Microstructure. Journal of Nuclear Materials 288:187–196

    Article  ADS  CAS  Google Scholar 

  • Peterson M H, Brown B F, Newbegin R L, et al (1967) Stress Corrosion Cracking of High Strength Steels and Titanium Alloys in Chloride Solutions at Ambient Temperature. Corrosion 23(5):142–148

    CAS  Google Scholar 

  • Pound, Bruce G (2003) Irreversible hydrogen trapping in high-strength alloys. Proc. of the International Conference on Hydrogen Effects on Material Behaviour and Corrosion Deformation Interactions, 2003, p 93–103, Sep 22-26 2002, Moran, WY, United States

    Google Scholar 

  • Pressouyre G M (1979) A Classification of Hydrogen Traps in Steel. Metall.Trans. 10A:1571–1573

    CAS  Google Scholar 

  • Pressouyre G M, Bernstein I M (1978) A Quantitative Analysis of Hydrogen Trapping. Metall. Trans. 9A:1571–1579

    CAS  Google Scholar 

  • Pressouyre G M (1980) Trap Theory of Hydrogen Embrittlement. Acta Metall. 28(7):895–911

    Article  CAS  Google Scholar 

  • Ramage R M, Jata K V, Shiflet G J, et al (1987) Effect of Phase Continuity on the Fatigue and Crack Closure Behavior of a Dual-Phase Steel. Author Affiliation: Univ of Virginia, Charlottesville, VA, USA Source: Metallurgical Transactions A. Jul 1987, vol.18A(7): 1291–1298

    ADS  CAS  Google Scholar 

  • Ren Xuechong, Chu Wuyang, Li Jinxu, Qiao Lijie, Su Yanjing (2007) Effect of MnS inclusions on hydrogen diffusion in steel. Beijing Keji Daxue Xuebao/Journal of University of Science and Technology Beijing, v 29, n 2:232–236, Language: Chinese

    Google Scholar 

  • Ritchie R O, Castrocedeno M H, Zackay V F, Parker E R (1978) Effect of Silicon Addition and Retained Austenite on Stress-Corrosion Cracking in Ultrahigh Strength Steel. Metallurgical Transactions A-Physical Metallurgy and Materials Science 9(l):35–40

    Article  ADS  Google Scholar 

  • Ritchie R O, Chang V A, Paton N E (1979) Influence of Retained Austenite on Fatigue Crack Propagation in HP9-4-20 High Strength Alloy Steel. Fatigue of Engineering Materials and Structures Vol.l(1):107–121

    Article  Google Scholar 

  • Sandoz G (1972) A Unified Theory for Some Effects of Hydrogen Source, Alloying Elements and Potential on Crack Growth in martensitic AISI 4340 Steel. Met. Trans. 3:1169–1176

    Article  CAS  Google Scholar 

  • Shih C H, Averbach B L, Cohen M (1956) Some Effect of Silicon on the Mechanical Properties of High Strength Steels. Transactions of the A.S.M. 48:66–118

    Google Scholar 

  • Steigerwald E A, Benjamin W D (1971) Effect of Composition on the Environmentally Induced Delayed Failure of Precracked High-strength Steel. Metall. Trans. 2(2):606–608

    Article  CAS  Google Scholar 

  • Stewart A T (1980) The Influence of Environment and Stress Ratio on Fatigue Crack Growth at Near Threshold Stress Intensities in Low-Alloy Steel. Engineering Fracture Mechanics 13(3): 463–478

    Article  CAS  Google Scholar 

  • Suzuki H, Mcevily A J (1979) Microstructural Effects on Fatigue Crack Growth in A low-Carbon Steel. Metall Trans A 10(4): 475–481

    Article  Google Scholar 

  • Tan Wenzhi, Du Yuanlong Fuchao (1988) Cathodic Protection Induced Hydrogen Embrittlement of ZC-120 Steel in Seawater. Material Protection 21(3):10–13

    Google Scholar 

  • Tan Zhunli, Bai Bingzhe, Fang Hongsheng, et al (2005) The Effect of Si on the Toughness of High Strength Mn-Si-Cr Series Bainitic Steels. Materials science forum (475–479): 213–216

    Article  Google Scholar 

  • Thomas Richard L S, Li Daoming, Gangloff Richard P., Scully John R. (2002) Trap-governed hydrogen diffusivity and uptake capacity in ultrahigh-strength

    Google Scholar 

  • Tomita Y, Okabayashi K (1985) Mechanical Properties of 0.40 Pct C-Ni-Cr-Mo High Strength Steel Having a Mixed Structure of Martensite and Bainite. Metall.Trans. 16A(l):73–82

    CAS  Google Scholar 

  • Tomita Y, Okabayashi K (1983) Improvement in Lower Temperature Mechanical Properties of 0.40Pct C-Ni-Cr-Mo Ultrahigh Strength Steel with the Second Phase Lower Bainite. Metall.Trans. 14A:485–492

    Google Scholar 

  • Tomita Y (1995) Mechanical Properties of Modified Heat Treated Silicon Modified 4330 Steel. Mater. Sci & Technol. 11:259–263

    CAS  Google Scholar 

  • Tomita Y, Okawa T (1995) Effect of Modified Heat Treatment on Mechanical Properties of 300M Steel. Mater. Sci & Technol. 11:245–251

    CAS  Google Scholar 

  • Tsay L W, Chi M Y, Wu Y F, Wu J K, Lin D Y (2006) Hydrogen embrittlement susceptibility and permeability of two ultra-high strength steels. Corrosion Science, v 48, n 8:1926–1938

    Article  CAS  Google Scholar 

  • Turnbull A, Hutchings R B (1994) Materials Science and Engineering Al77:161–171

    Google Scholar 

  • Wang Qingyuan (2002) fatigue study on ultra-high strength steel with one billion frequencies. Mechanical Strength 24(1):81–83

    CAS  Google Scholar 

  • Wang Xiaojing (1979) Metal Brittleness. Material Protection (2–3): 11–25

    ADS  Google Scholar 

  • Watkinson F, Boniszewski T (1973) Effect of Weld Microstructures on Hydrogen-Induced Cracking in Transformable Steels: Part 1. Metals and Materials 2:90–96

    Google Scholar 

  • Wu-Yang Chu, Chi Mei Hsiao, Wen-Xue Li, et al (1984) Investigation of Stress Corrosion Cracking of the Cast and Forged Steel in Water. Metall.Trans. 15(11):2087–2092

    Article  Google Scholar 

  • Wu-Yang Chu, Chi Mei Hsiao, Bai Ji Xu (1986) Stress Corrosion Cracking in High Strength Steel under Mode III Loading. Metall. Trans. 17(4):711–716

    Article  Google Scholar 

  • Xiao Jimei (1990) Metal Corrosion under the Action of Stress. Beijing: Chemical Industry Press, 1990, 372

    Google Scholar 

  • Xu Jian, Dai Xinmin, Xia Yuzhu (1981) Corrosion Metallkunde and Anti-corrosion Metal Materials. Zhejiang: Zhejiang Science and Technology Publishing House. 1981, 77

    Google Scholar 

  • Zakroczymski Tadeusz (1999) Electrochemical Determination of Hydrogen in Metals. Journal of Electroanalytical Chemistry 475:82–88

    Article  CAS  Google Scholar 

  • Zhang Mingxing, Kang Mokuang (1993) Relation between mechanical stability and strength and roughness of granular bainitic retained austensite. Journal of Metal Thermal Treatment 14(1):14–19

    CAS  MathSciNet  Google Scholar 

  • Zheng Wenlong, Yu Qing (1988) Environmental Susceptive Fracture of Steel. Beijing: Chemical Industry Press, 1988, 145

    Google Scholar 

  • Zhou Dehui, Tan Yun (1998) Environmental Hydrogen Embrittlement and Testing Technology of Metal. Beijing: National Defence Industry Press, 1998, 6–10/19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Metallurgical Industry Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Bai, B. (2009). Carbide-free Bainite/Martensite (CFB/M) Duplex Phase Steel. In: Ultra-Fine Grained Steels. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77230-9_7

Download citation

Publish with us

Policies and ethics