Skip to main content

From Protoplanetary Disks to Planetary Disks: Gas Dispersal and Dust Growth

  • Chapter
  • First Online:
Small Bodies in Planetary Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 758))

Abstract

We discuss the evolution of gas and dust in protoplanetary disks, first considering removal of the gas from the disks. Using a simple model, we argue that it is difficult to remove all the disk gas solely by viscous accretion. We discuss photoevaporation as a plausible mechanism for removing the disk gas, and estimate the timescale of gas removal. We then discuss growth of the dust particles into planetesimals. The dust particles first sediment to the midplane of the disk and then radially migrate toward the central star. We estimate the growth timescale during sedimentation and discuss the growth of dust bodies as they move radially toward the star.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Adachi, C. Hayashi, and K. Nakazawa: The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula., Prog. Theor. Phys. 56, 1756 (1976)

    Article  ADS  Google Scholar 

  2. R. D. Alexander, C. J. Clarke, and J. E. Pringle: Constraints on the ionizing flux emitted by T Tauri stars, Mon. Not. Royal Astron. Soc. 358, 283 (2005)

    Article  ADS  Google Scholar 

  3. R. D. Alexander, C. J. Clarke, and J. E. Pringle: Photoevaporation of protoplanetary discs – I. Hydrodynamic models, Mon. Not. Royal Astron. Soc. 369, 216 (2006)

    Article  ADS  Google Scholar 

  4. S. M. Andrews and J. P. Williams: Circumstellar dust disks in Taurus-Auriga: the submillimeter perspective, Astrophys. J. 631, 1134 (2005)

    Article  ADS  Google Scholar 

  5. S. M. Andrews and J. P. Williams: High-resolution submillimeter constraints on circumstellar disk structure, Astrophys. J. 659, 705 (2007)

    Article  ADS  Google Scholar 

  6. P. Artymowicz: Beta pictoris: an early solar system?, Annu. Rev. Earth Planet. Sci. 25, 175 (1997)

    Article  ADS  Google Scholar 

  7. S. A. Balbus and J. F. Hawley: Instability, turbulence, and enhanced transport in accretion disks, Rev. Mod. Phys. 70, 1 (1998)

    Article  ADS  Google Scholar 

  8. J. Bally, C. R. O’Dell, and M. J. McCaughrean: Disks, microjets, windblown bubbles, and outflows in the Orion Nebula, Astron. J. 119, 2919 (2000)

    Article  ADS  Google Scholar 

  9. P. Barge and J. Sommeria: Did planet formation begin inside persistent gaseous vortices?, Astron. Astrophys. 295, L1 (1995)

    ADS  Google Scholar 

  10. M. R. Bate, S. H. Lubow, G. I. Ogilvie, and K. A. Miller: Three-dimensional calculations of high- and low-mass planets embedded in protoplanetary discs, Mon. Not. Royal Astron. Soc. 341, 213 (2003)

    Article  ADS  Google Scholar 

  11. S. V. W. Beckwith and A. I. Sargent: Circumstellar disks and the search for neighbouring planetary systems, Nature 383, 139 (1996)

    Article  ADS  Google Scholar 

  12. S. V. W. Beckwith, A. I. Sargent, R. S. Chini, and R. Guesten: A survey for circumstellar disks around young stellar objects, Astron. J. 99, 924 (1990)

    Article  ADS  Google Scholar 

  13. A. Brandeker, R. Liseau, G. Olofsson, and M. Fridlund: The spatial structure of the β Pictoris gas disk, Astron. Astrophys. 413, 681 (2004)

    Google Scholar 

  14. P. Cassen and A. Moosman: On the formation of protostellar disks, Icarus 48, 353 (1981)

    Article  ADS  Google Scholar 

  15. S. Chapman and T. G. Cowling: The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Combustion and Diffusion in Gases (Cambridge Mathematical Library), (Cambridge Univ. Press, Cambridge, 1991)

    Google Scholar 

  16. C. H. Chen and I. Kamp: Are giant planets forming around HR 4796A?, Astrophys. J. 602, 985 (2004)

    Article  ADS  Google Scholar 

  17. E. I. Chiang and P. Goldreich: Spectral energy distributions of T Tauri stars with passive circumstellar disks, Astrophys. J. 490, 368 (1997)

    Article  ADS  Google Scholar 

  18. I. M. Coulson, W. R. F. Dent, and J. S. Greaves: The absence of CO from the dust peak around ϶ Eri, Mon. Not. Royal Astron. Soc. 348, L39 (2004)

    Article  ADS  Google Scholar 

  19. J. N. Cuzzi and R. C. Hogan: Blowing in the wind I. Velocities of chondrule-sized particles in a turbulent protoplanetary nebula, Icarus 164, 127 (2003)

    Article  ADS  Google Scholar 

  20. J. N. Cuzzi, A. R. Dobrovolskis, and J. M. Champney: Particle–gas dynamics in the midplane of a protoplanetary nebula, Icarus 106, 102 (1993)

    Article  ADS  Google Scholar 

  21. C. Dominik and A. G. G. M. Tielens: The physics of dust coagulation and the structure of dust aggregates in space, Astrophys. J. 480, 647 (1997)

    Article  ADS  Google Scholar 

  22. A. Dutrey, S. Guilloteau, G. Duvert, L. Prato, M. Simon, K. Schuster, and F. Menard: Dust and gas distribution around T Tauri stars in Taurus-Auriga. I. Interferometric 2.7 mm continuum and 13CO J=1-0 observations , Astron. Astrophys. 309, 493 (1996)

    ADS  Google Scholar 

  23. A. Dutrey, S. Guilloteau, and M. Guelin: Chemistry of protosolar-like nebulae: the molecular content of the DM Tau and GG Tau disks, Astron. Astrophys. 317, L55 (1997)

    ADS  Google Scholar 

  24. A. Dutrey, A. Lecavelier Des Etangs, and J.-C. Augereau: The observation of circumstellar disks: dust and gas components, in Comets II, M. C. Festou, H. U. Keller, and H. A. Weaver (Eds.), (Univ. of Arizona Press, Tucson, 2004) 81

    Google Scholar 

  25. J. Frank, A. King, and D. Raine: Accretion Power in Astrophysics, (Cambridge Univ. Press, Cambridge, 1992)

    Google Scholar 

  26. S. Fromang and R. P. Nelson: On the accumulation of solid bodies in global turbulent protoplanetary disc models Mon. Not. Royal Astron. Soc. 364, L81 (2005)

    ADS  Google Scholar 

  27. P. Garaud, L. Barriere-Fouchet, and D. N. C. Lin: Individual and average behavior of particles in a protoplanetary nebula, Astrophys. J. 603, 292 (2004)

    Article  ADS  Google Scholar 

  28. P. Goldreich and W. R. Ward: The formation of planetesimals, Astrophys. J. 183, 1051 (1973)

    Article  ADS  Google Scholar 

  29. J. Goodman and B. Pindor: Secular instability and planetesimal formation in the dust layer, Icarus 148, 537 (2000).

    Article  ADS  Google Scholar 

  30. J. S. Greaves: Dense gas discs around T Tauri stars, Mon. Not. Royal Astron. Soc. 351, L99 (2004)

    Article  ADS  Google Scholar 

  31. N. Haghighipour and A. P. Boss: On pressure gradients and rapid migration of solids in a nonuniform solar nebula, Astrophys. J. 583, 996 (2003a)

    Google Scholar 

  32. N. Haghighipour and A. P. Boss: On gas drag-induced rapid migration of solids in a nonuniform solar nebula, Astrophys. J. 598, 1301 (2003b)

    Google Scholar 

  33. P. Hartigan, S. Edwards, and L. Ghandour: Disk accretion and mass loss from young stars, Astrophys. J. 452, 736 (1995)

    Article  ADS  Google Scholar 

  34. L. Hartmann: Accretion Processes in Star Formation, (Cambridge Univ. Press, Cambridge, 1998)

    Google Scholar 

  35. L. Hartmann, N. Calvet, E. Gullbring, and P. D’Alessio: Accretion and the evolutiion of T Tauri disks, Astrophys. J. 495, 385 (1998)

    Article  ADS  Google Scholar 

  36. J. F. Hawley, C. F. Gammie, and S. A. Balbus: Local three-dimensional magnetohydrodynamic simulations of accretion disks, Astrophys. J. 440, 742 (1995)

    Article  ADS  Google Scholar 

  37. J. F. Hawley, C. F. Gammie, and S. A. Balbus: Local three-dimensional simulations of an accretion disk hydromagnetic dynamo, Astrophys. J. 464, 690 (1996)

    Article  ADS  Google Scholar 

  38. D. Hollenbach, D. Johnstone, S. Lizano, and F. Shu: Photoevaporation of disks around massive stars and application to ultracompact H II regions, Astrophys. J. 428, 654 (1994)

    Article  ADS  Google Scholar 

  39. D. J. Hollenbach, H. W. Yorke, and D. Johnstone: Disk dispersal around young stars, in Protostars and Planets IV, V. Mannings, A. P. Boss, and S. S. Russell (Eds.), (Univ. of Arizona Press, Tucson , 2000), 401

    Google Scholar 

  40. N. Ishitsu and M. Sekiya: Shear instabilities in the dust layer of the solar nebula III. Effects of the Coriolis force, Earth Planets Space 54, 917 (2002)

    ADS  Google Scholar 

  41. N. Ishitsu and M. Sekiya: The effects of the tidal force on shear instabilities in the dust layer of the solar nebula, Icarus 165, 181 (2003)

    Article  ADS  Google Scholar 

  42. A. Johansen and H. Klahr: Dust diffusion in protoplanetary disks by magnetorotational turbulence Astrophys. J. 634, 1353 (2005)

    Article  ADS  Google Scholar 

  43. A. Johansen and A. Youdin: Protoplanetary disk turbulence driven by the streaming instability: nonlinear saturation and particle concentration, Astrophys. J. 662, 627 (2007)

    Article  ADS  Google Scholar 

  44. A. Johansen, T. Henning, and H. Klahr: Dust sedimentation and self-sustained Kelvin–Helmholtz turbulence in protoplanetary disk midplanes, Astrophys. J. 643, 1219 (2006)

    Article  ADS  Google Scholar 

  45. S. Kempf, S. Pfalzner, and T. K. Henning: N-Particle-simulations of dust growth. I. Growth driven by Brownian motion, Icarus 141, 388 (1999)

    Article  ADS  Google Scholar 

  46. S. J. Kenyon and L. Hartmann: Spectral energy distributions of T Tauri stars - Disk flaring and limits on accretion, Astrophys. J. 323, 714 (1987)

    Article  ADS  Google Scholar 

  47. Y. Kitamura, M. Momose, S. Yokogawa, R. Kawabe, M. Tamura, and S. Ida: Investigation of the physical properties of protoplanetary disks around T Tauri stars by a 1 arcsecond imaging survey: evolution and diversity of the disks in their accretion stage, Astrophys. J. 581, 357 (2002)

    Article  ADS  Google Scholar 

  48. H. H. Klahr and T. Henning: Particle-trapping eddies in protoplanetary accretion disks, Icarus 128, 213 (1997)

    Article  ADS  Google Scholar 

  49. E. Kokubo and S. Ida: Formation of protoplanet systems and diversity of planetary systems, Astrophys. J. 581, 666 (2002)

    Article  ADS  Google Scholar 

  50. M. Krause and J. Blum: Growth and form of planetary seedlings: results from a sounding rocket microgravity aggregation experiment, Phys. Rev. Lett. 93, 021103 (2004)

    Article  ADS  Google Scholar 

  51. A.,-M. Lagrange, D. E. Backman, and P. Artymowicz: Planetary material around main-sequence stars, in Protostars and Planets IV, V. Mannings, A. P. Boss, and S. S. Russell (Eds.), (Univ. of Arizona Press, Tucson: 2000), 639

    Google Scholar 

  52. L. D. Landau and E. M. Lifshitz: Fluid Mechanics (Course of Theoretical Physics), Butterworth-Heinemann (1987) 12

    Google Scholar 

  53. A. Lecavelier des Etangs, et al.: Deficiency of molecular hydrogen in the disk of β Pictoris, Nature 412, 706 (2001).

    Article  ADS  Google Scholar 

  54. R. Liseau: Molecular line observations of southern main-sequence stars with dust disks: α Ps A, β Pic, ε Eri and HR 4796 A. Does the low gas content of the β Pic and ε Eri disks hint of planets?, Astron. Astrophys. 348, 133 (1999)

    ADS  Google Scholar 

  55. S. H. Lubow, M. Seibert, and P. Artymowicz: Disk accretion onto high-mass planets, Astrophys. J. 526, 1001 (1999)

    Article  ADS  Google Scholar 

  56. W. J. Markiewicz, H. Mizuno, and H. J. Völk: Turbulence induced relative velocity between two grains, Astron. Astrophys. 242, 286 (1991)

    ADS  Google Scholar 

  57. I. Matsuyama, D. Johnstone, and L. Hartmann: Viscous diffusion and photoevaporation of stellar disks, Astrophys. J. 582, 893 (2003)

    Article  ADS  Google Scholar 

  58. Y. Nakagawa, M. Sekiya, and C. Hayashi: Settling and growth of dust particles in a laminar phase of a low-mass solar nebula, Icarus 67, 375 (1986)

    Article  ADS  Google Scholar 

  59. H. Nomura and Y. Nakagawa: Dust size growth and settling in a protoplanetary disk, Astrophys. J. 640, 1099 (2006)

    Article  ADS  Google Scholar 

  60. C. W. Ormel and J. N. Cuzzi: Closed-form expressions for particle relative velocities induced by turbulence, Astron. Astrophys. 466, 413 (2007)

    Article  ADS  MATH  Google Scholar 

  61. C. W. Ormel, M. Spaans, A. G. G. M. Tielens: Dust coagulation in protoplanetary disks: porosity matters Astron. Astrophys. 461, 215 (2007)

    Article  ADS  Google Scholar 

  62. V. Ossenkopf: Dust coagulation in dense molecular clouds: the formation of fluffy aggregates, Astron. Astrophys. 280, 617 (1993)

    ADS  Google Scholar 

  63. D. E. Osterbrock: Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, (Univ. Science Books, Mill Valley, 1989)

    Book  Google Scholar 

  64. M. Osterloh and S. V. W. Beckwith: Millimeter-wave continuum measurements of young stars, Astrophys. J. 439, 288 (1995)

    Article  ADS  Google Scholar 

  65. D. Paszun and C. Dominik: The influence of grain rotation on the structure of dust aggregates, Icarus 182, 274 (2006)

    Article  ADS  Google Scholar 

  66. J. B. Pollack, D. Hollenbach, S. Beckwith, D. P. Simonelli, T. Roush, and W. Fong: Composition and radiative properties of grains in molecular clouds and accretion disks, Astrophys. J. 421, 615 (1994)

    Article  ADS  Google Scholar 

  67. J. E. Pringle: Accretion discs in astrophysics, Annu. Rev. Astron. Astrophys., 19, 137 (1981)

    Article  ADS  Google Scholar 

  68. S. P. Ruden: Evolution of photoevaporating protoplanetary disks, Astrophys. J. 605, 880 (2004)

    Article  ADS  Google Scholar 

  69. T. Sano and J. M. Stone: The effect of the Hall term on the nonlinear evolution of the magnetorotational instability. II. Saturation level and critical magnetic Reynolds number, Astrophys. J. 577, 534 (2002)

    Article  ADS  Google Scholar 

  70. T. Sano, S. Inutsuka, N. J. Turner, and J. M. Stone: Angular momentum transport by magnetohydrodynamic turbulence in accretion disks: gas pressure dependence of the saturation level of the magnetorotational instability, Astrophys. J. 605, 321 (2004)

    Article  ADS  Google Scholar 

  71. M. Sekiya: Gravitational instabilities in a dust–gas layer and formation of planetesimals in the solar nebula, Prog. Theor. Phys. 69, 1116 (1983)

    Article  ADS  Google Scholar 

  72. M. Sekiya: Quasi-equilibrium density distributions of small dust aggregations in the solar nebula, Icarus 133, 298 (1998)

    Article  ADS  Google Scholar 

  73. M. Sekiya and N. Ishitsu: Shear instabilities in the dust layer of the solar nebula I. The linear analysis of a non-gravitating one-fluid model without the Coriolis and the solar tidal forces, Earth Planets Space 52, 517 (2000)

    ADS  Google Scholar 

  74. M. Sekiya and N. Ishitsu: Shear instabilities in the dust layer of the solar nebula II. Different unperturbed states, Earth Planets Space 53, 761 (2001)

    ADS  Google Scholar 

  75. S. W. Stahler and F. Palla: The Formation of Stars, (Wiley-VCH Verlag GmbH & Co.KGaA, Berlin, 2004)

    Google Scholar 

  76. J. M. Stone, J. F. Hawley, C. F. Gammie, and S. A. Balbus: Three-dimensional magnetohydrodynamical simulations of vertically stratified accretion disks, Astrophys, J. 463, 656 (1996)

    Article  ADS  Google Scholar 

  77. T. Takeuchi and D. N. C. Lin: Radial flow of dust particles in accretion disks, Astrophys. J. 581, 1344 (2002)

    Article  ADS  Google Scholar 

  78. T. Takeuchi, S. M. Miyama, and D. N. C. Lin: Gap formation in protoplanetary disks, Astrophys. J. 460, 832 (1996)

    Article  ADS  Google Scholar 

  79. P. Tanga, A. Babiano, B. Dubrulle, and A. Provenzale: Forming planetesimals in vortices, Icarus 121, 158 (1996)

    Article  ADS  Google Scholar 

  80. S. Terebey, F. H. Shu, and P. Cassen: The collapse of the cores of slowly rotating isothermal clouds, Astrophys. J. 286, 529 (1984)

    Article  ADS  Google Scholar 

  81. H. J. Völk, F. C. Jones, G. E. Morfill, and S. Roeser: Collisions between grains in a turbulent gas, Astron. Astrophys. 85, 316 (1980)

    ADS  Google Scholar 

  82. S. J. Weidenschilling: Aerodynamics of solid bodies in the solar nebula, Mon. Not. Royal Astron. Soc. 180, 57 (1977)

    ADS  Google Scholar 

  83. S. J. Weidenschilling: Evolution of grains in a turbulent solar nebula, Icarus 60, 553 (1984)

    Article  ADS  Google Scholar 

  84. S. J. Weidenschilling: Radial drift of particles in the solar nebula: implications for planetesimal formation, Icarus 165, 438 (2003)

    Article  ADS  Google Scholar 

  85. S. J. Weidenschilling: From icy grains to comets in Comets II, M. C. Festou, H. U. Keller, and H. A. Weaver (Eds.),(Univ. of Arizona Press, Tucson, 2004), 97

    Google Scholar 

  86. S. J. Weidenschilling: Models of particle layers in the midplane of the solar nebula, Icarus 181, 572 (2006)

    Article  ADS  Google Scholar 

  87. G. Wurm, G. Paraskov, and O. Krauss: Growth of planetesimals by impacts at ∼25 m/s, Icarus 178, 253 (2005)

    Article  ADS  Google Scholar 

  88. A. N. Youdin and E. I. Chiang: Particle pileups and planetesimal formation, Astrophys. J. 601, 1109 (2004)

    Article  ADS  Google Scholar 

  89. A. N. Youdin and J. Goodman: Streaming instabilities in protoplanetary disks, Astrophys. J. 620, 459 (2005)

    Article  ADS  Google Scholar 

  90. A. Youdin and A. Johansen: Protoplanetary disk turbulence driven by the streaming instability: linear evolution and numerical methods, Astrophys. J. 662, 613 (2007)

    Article  ADS  Google Scholar 

  91. A. N. Youdin and F. H. Shu: Planetesimal formation by gravitational instability, Astrophys. J. 580, 494 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Takeuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takeuchi, T. (2008). From Protoplanetary Disks to Planetary Disks: Gas Dispersal and Dust Growth. In: Mann, I., Nakamura, A., Mukai, T. (eds) Small Bodies in Planetary Systems. Lecture Notes in Physics, vol 758. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76935-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76935-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76934-7

  • Online ISBN: 978-3-540-76935-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics