Skip to main content

Coronary Flow Reserve

  • Chapter
Stress Echocardiography

The assessment of coronary flow reserve by transthoracic echocardiography has recently been introduced into clinical practice with gratifying results for the diagnosis of left anterior descending artery disease, as reported by several independent laboratories. This technological novelty is changing the practice of stress echocardiography for three main reasons. First, adding coronary flow reserve to regional wall motion allows us to have – in the same sitting – a diagnostic marker of high specificity (regional wall motion) and high sensitivity (coronary flow reserve), with an obvious improvement in overall diagnostic accuracy. Second, the technicalities of coronary flow reserve shift the balance of stress choice in favor of vasodilators, which are a more robust hyperemic stress and are substantially easier to perform with dual imaging than dobutamine or exercise. Third, the coronary flow reserve adds a quantitative support to the exquisitely qualitative assessment of wall motion analysis, thereby facilitating the communication of stress echocardiography results to the cardiological world outside the echocardiography laboratory. The next challenges involve the need to expand the exploration of coronary flow reserve to the right and circumflex coronary artery and to prove the additional prognostic value – if any – of coronary flow reserve over regional wall motion analysis, which remains the cornerstone of clinically driven diagnosis in the stress echocardiography laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gould KL, Lipscomb K (1974) Effects of coronary stenosis on coronary flow reserve and resistance. Am J Cardiol 34:48–55

    Article  PubMed  CAS  Google Scholar 

  2. Uren NG, Melin JA, De Bruyne B, et al (1994) Relation between myocardial blood flow and the severity of coronary artery stenosis. N Engl J Med 330:1782–1788

    Article  PubMed  CAS  Google Scholar 

  3. White C W, Wright CB, Doty DB, et al (1984) Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310:819–824

    PubMed  CAS  Google Scholar 

  4. Topol EJ, Nissen SE (1995) Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 92:2333–2342

    PubMed  CAS  Google Scholar 

  5. Varga A, Picano E, Cortigiani L, et al (1996) Does stress echocardiography predict the site of future myocardial infarction? A large-scale multicenter study. J Am Coll Cardiol 28:45–51

    Article  PubMed  CAS  Google Scholar 

  6. Strauer BE (1990) The significance of coronary reserve in clinical heart disease. J Am Coll Cardiol 15:775–783

    PubMed  CAS  Google Scholar 

  7. Gould KL (1991) Comparison of PET and other imaging techniques. In: Gould KL (ed) Coronary artery stenosis. Elsevier, Amsterdam

    Google Scholar 

  8. Saraste M, Koskenvuo J, Knuuti J, et al (2001) Coronary flow reserve: measurement with tran-sthoracic Doppler echocardiography is reproducible and comparable with positron emission tomography. Clin Physiol 21:114–122

    Article  PubMed  CAS  Google Scholar 

  9. Ono S, Nohara R, Kambara H, Okuda K, Kawai C (1992) Regional myocardial perfusion and glucose metabolism in experimental left bundle branch block. Circulation. 85:1125–1131

    PubMed  CAS  Google Scholar 

  10. Kiviniemi TO, Toikka JO, Koskenvuo J W, et al (2007) Vasodilation of epicardial coronary artery can be measured with transthoracic echocardiography. Ultrasound Med Biol. 33:362–370

    Article  PubMed  Google Scholar 

  11. Iliceto S, Marangelli V, Memmola C, et al (1991) Transesophageal Doppler echocardiography evaluation of coronary blood flow velocity in baseline conditions and during dipyridamole-induced coronary vasodilation. Circulation 83:61–69

    PubMed  CAS  Google Scholar 

  12. Radvan J, Marwick TH, Williams MJ, et al (1995) Evaluation of the extent and timing of the coronary hyperemic response to dipyridamole: a study with transesophageal echocardi-ography and positron emission tomography with oxygen 15 water. J Am Soc Echocardiogr. 8:864–873

    Article  PubMed  CAS  Google Scholar 

  13. Hozumi T, Yoshida K, Ogata Y, et al (1998) Noninvasive assessment of significant left anterior descending coronary artery stenosis by coronary flow velocity reserve with transthoracic color Doppler echocardiography. Circulation 97:1557–1562

    PubMed  CAS  Google Scholar 

  14. Caiati C, Montaldo C, Zedda N, et al (1999) New noninvasive method for coronary flow reserve assessment: contrast-enhanced transthoracic second harmonic echo Doppler. Circulation 99:771–778

    PubMed  CAS  Google Scholar 

  15. Lim HE, Shim WJ, Rhee H, et al (2000) Assessment of coronary flow reserve with transtho-racic Doppler echocardiography: comparison among adenosine, standard-dose dipyridamole, and high-dose dipyridamole. J Am Soc Echocardiogr 13:264–270

    Article  PubMed  CAS  Google Scholar 

  16. Daimon M, Watanabe H, Yamagishi H, et al (2001) Physiologic assessment of coronary artery stenosis by coronary flow reserve measurements with transthoracic Doppler echocardiography: comparison with exercise thallium-201 single photon emission computed tomography. J Am Coll Cardiol 37:1310–1315

    Article  PubMed  CAS  Google Scholar 

  17. Pizzuto F, Voci P, Mariano E, et al (2001) Assessment of flow velocity reserve by transtho-racic Doppler echocardiography and venous adenosine infusion before and after left anterior descending coronary artery stenting. J Am Coll Cardiol 38:155–162

    Article  PubMed  CAS  Google Scholar 

  18. Barbato E, Bartunek J, Wyffels E, et al (2003) Effects of intravenous dobutamine on coronary vasomotion in humans. J Am Coll Cardiol 42:1596–1601

    Article  PubMed  CAS  Google Scholar 

  19. Wikström J, Grönros J, Gan LM (2008) Adenosine induces dilation of epicardial coronary arteries in mice — Relationship between coronary flow velocity reserve and coronary flow reserve in vivo using transthoracic echocardiography. Ultrasound Med Biol 34:1053–1062

    Article  PubMed  Google Scholar 

  20. Iskandrian AS, Verani MS, Heo J (1994) Pharmacologic stress testing: mechanism of action, hemo-dynamic responses, and results in detection of coronary artery disease. J Nucl Cardiol 1:94–111

    Article  PubMed  CAS  Google Scholar 

  21. Picano E (1992) Stress echocardiography. From pathophysiological toy to diagnostic tool. Circulation 85:1604–1612

    PubMed  CAS  Google Scholar 

  22. Martin T W, Seaworth JF, Johns J P, et al (1992) Comparison of adenosine, dipyridamole, and dobutamine in stress echocardiography. Ann Intern Med 116:190–196

    PubMed  CAS  Google Scholar 

  23. Rossen JD, Quillen JE, Lopez AG, et al (1990) Comparison of coronary vasodilation with intravenous dipyridamole and adenosine. J Am Coll Cardiol 15:373–377

    Google Scholar 

  24. Dimitrow PP (2003) Transthoracic Doppler echocardiography — noninvasive diagnostic window for coronary flow reserve assessment. Cardiovasc Ultrasound 1:4

    Article  PubMed  Google Scholar 

  25. Dimitrow P P, Galderisi M, Rigo F (2005) The non-invasive documentation of coronary micro-circulation impairment: role of transthoracic echocardiography. Cardiovasc Ultrasound 3:18

    Article  PubMed  Google Scholar 

  26. Rigo F (2005) Coronary flow reserve in stress-echo lab. From pathophysiologic toy to diagnostic tool. Cardiovasc Ultrasound 3:8

    Article  PubMed  Google Scholar 

  27. Rigo F, Murer B, Ossena G et al (2008)Transthoracic echocardiographic imaging of coronary arteries: tips, traps, and pitfalls. Cardiovasc Ultrasound 6:7

    Article  PubMed  Google Scholar 

  28. Rigo F, Richieri M, Pasanisi E, et al (2003) Usefulness of coronary flow reserve over regional wall motion when added to dual-imaging dipyridamole echocardiography. Am J Cardiol 91:269–273

    Article  PubMed  Google Scholar 

  29. Nohtomi Y, Takeuchi M, Nagasawa K, et al (2003) Simultaneous assessment of wall motion and coronary flow velocity in the left anterior descending coronary artery during dipyrida-mole stress echocardiography. J Am Soc Echo 17:457–463

    Google Scholar 

  30. Lowenstein J, Tiano C, Marquez G, et al (2003) Simultaneous analysis of wall motion and coronary flow reserve of the left anterior descending coronary artery by transthoracic Doppler echocardiography during dipyridamole stress. J Am Soc Echo 17:735–744

    Google Scholar 

  31. Chirillo F, Bruni A, De Leo A, et al (2004) Usefulness of dipyridamole stress echocardiography for predicting graft patency after coronary artery bypass grafting. Am J Cardiol 93:24–30

    Article  PubMed  Google Scholar 

  32. Ascione L, De Michele M, Accadia M, et al (2006) Incremental diagnostic value of ultrasono-graphic assessment of coronary flow reserve with high-dose dipyridamole in patients with acute coronary syndrome. Int J Cardiol. 106:313–318

    Article  PubMed  Google Scholar 

  33. Lattanzi F, Picano E, Bolognese L, et al (1991) Inhibition of dipyridamole-induced ischemia by antianginal therapy in humans. Correlation with exercise electrocardiography. Circulation 83:1256–1262

    CAS  Google Scholar 

  34. Sicari R, Cortigiani L, Bigi R, et al; Echo-Persantine International Cooperative (EPIC) Study Group; Echo-Dobutamine International Cooperative (EDIC) Study Group (2004) Prognostic value of pharmacological stress echocardiography is affected by concomitant antiischemic therapy at the time of testing. Circulation 109:2428–2431

    Article  PubMed  CAS  Google Scholar 

  35. Voci P, Pizzuto F, Mariano E et al (2002) Measurement of coronary flow reserve in the anterior and posterior descending coronary arteries by transthoracic Doppler ultrasound. Am J Cardiol 90:988–991

    Article  PubMed  Google Scholar 

  36. Ueno Y, Nakamura Y, Takashima H et al (2002) Noninvasive assessment of coronary flow velocity and coronary flow velocity reserve in the right coronary artery by transthoracic Doppler echocardiography: comparison with intracoronary Doppler guidewire. J Am Soc Echocardi-ogr 15:1074–1079

    Article  Google Scholar 

  37. Neglia D, Michelassi C, Trivieri MG, et al (2002) Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105:186–193

    Article  PubMed  Google Scholar 

  38. Cecchi F, Olivotto I, Gistri R et al (2003) Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 349:1027–1035

    Article  PubMed  CAS  Google Scholar 

  39. Schächinger V, Britten M, Zeiher A (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101:1899–1906

    PubMed  Google Scholar 

  40. Albertal M, Voskuil M, Piek JJ, et al; The Doppler Endpoints Balloon Angioplasty Trial Europe (DEBATE) II Study Group (2002) Coronary flow velocity reserve after percutaneous interventions is predictive of periprocedural outcome. Circulation 105:1573–1578

    Article  PubMed  CAS  Google Scholar 

  41. Rigo F, Cortigiani L, Pasanisi E, et al (2006) The additional prognostic value of coronary flow reserve on left anterior descending artery in patients with negative stress echo by wall motion criteria. A Transthoracic Vasodilator Stress Echocardiography Study. Am Heart J 151:124–130

    Article  PubMed  Google Scholar 

  42. Rigo F, Sicari R, Gherardi S, et al (2008) The additive prognostic value of wall motion abnormalities and coronary flow reserve during dipyridamole stress echo. Eur Heart J 29:79–88

    Article  PubMed  Google Scholar 

  43. Rigo F, Sicari R, Gherardi S, et al (2007) Prognostic value of coronary flow reserve in medically treated patients with left anterior descending coronary disease with stenosis 51% to 75% in diameter. Am J Cardiol 100:1527–31

    Article  PubMed  Google Scholar 

  44. Meimoun P, Benali T, Elmkies F, et al (2008) Prognostic value of transthoracic coronary flow reserve in medically treated patients with proximal left anterior descending artery stenosis of intermediate severity. Eur J Echocardiogr 10:127–32

    Article  PubMed  Google Scholar 

  45. Cortigiani L, Bigi R, Sicari R, et al (2007) Comparison of prognostic value of pharmacologic stress echocardiography in chest pain patients with versus without diabetes mellitus and positive exercise electrocardiography. Am J Cardiol 100:1744–1749

    Article  PubMed  Google Scholar 

  46. Sicari R, Rigo F, Gherardi D, et al (2008) The prognostic value of Doppler echocardiographic-derived coronary flow reserve is not affected by concomitant antiischemic therapy at the time of testing. Am Heart J 155:1110–1117

    Google Scholar 

  47. Rigo F, Gherardi S, Galderisi M, et al (2006) The prognostic impact of coronary flow-reserve assessed by Doppler echocardiography in non-ischaemic dilated cardiomyopathy. Eur Heart J 27:1319–1323

    Article  PubMed  Google Scholar 

  48. Sicari R, Rigo F, Gherardi S et al (2008) Prognostic implications of coronary flow reserve on left anterior descending coronary artery in hypertrophic cardiomyopathy. Am J Cardiol 102:1634–1646

    Google Scholar 

  49. Tona F, Caforio AL, Montisci R, et al (2006) Coronary flow velocity pattern and coronary flow reserve by contrast-enhanced transthoracic echocardiography predict long-term outcome in heart transplantation. Circulation 114:I49–I55

    Article  PubMed  Google Scholar 

  50. De Bono D P, Samani NJ, Spyt TJ, et al (1992) Transcutaneous ultrasound measurements of blood flow in internal mammary artery to coronary artery graft. Lancet 339:379–381

    Article  PubMed  Google Scholar 

  51. Fusejima K, Takahara Y, Sudo Y, et al (1990) Comparison of coronary hemodynamics in patients with internal mammary artery and saphenous vein coronary artery bypass grafts: a noninvasive approach using combined two-dimensional and Doppler echocardiography. J Am Coll Cardiol 15:131–139

    Article  PubMed  CAS  Google Scholar 

  52. De Simone L, Caso P, Severino S, et al (1999) Noninvasive assessment of left and right internal mammary artery graft patency with high-frequency transthoracic echocardiography. J Am Soc Echocardiogr 12:841–849

    Article  PubMed  Google Scholar 

  53. Chirillo F, Bruni A, Balestra G, et al (2001) Assessment of internal mammary artery and saphenous vein graft patency and flow reserve using transthoracic Doppler echocardiography. Heart 86:424–431

    Article  PubMed  CAS  Google Scholar 

  54. Sicari R, Nihoyannopoulos P, Evangelista A, et al; European Association of Echocardiogra-phy (2009) Stress echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur J Echocardiogr 9:415–437

    Article  Google Scholar 

  55. Shiina Y, Funabashi N, Lee K, et al (2007) Acute effect of oral flavonoid-rich dark chocolate intake on coronary circulation, as compared with non-flavonoid white chocolate, by transtho-racic Doppler echocardiography in healthy adults. Int J Cardiol 131:424–9

    Article  PubMed  Google Scholar 

  56. Kiviniemi TO, Saraste A, Toikka JO, et al (2007) A moderate dose of red wine, but not de-alcoholized red wine increases coronary flow reserve. Atherosclerosis 195:e176–e181

    Article  PubMed  CAS  Google Scholar 

  57. Galderisi M, de Simone G, D'Errico A, et al (2008) Independent association of coronary flow reserve with left ventricular relaxation and filling pressure in arterial hypertension. Am J Hypertens 21:1060–6

    Google Scholar 

  58. Erdogan D, Yildirim I, Ciftci O, et al (2007) Effects of normal blood pressure, prehyperten-sion, and hypertension on coronary microvascular function. Circulation 115:593–599

    Article  PubMed  Google Scholar 

  59. Kiviniemi TO, Saraste A, Toikka JO, et al (2008) Effects of cognac on coronary flow reserve and plasma antioxidant status in healthy young men. Cardiovasc Ultrasound 6:25

    Article  PubMed  Google Scholar 

  60. Galderisi M, Capaldo B, Sidiropulos M, et al (2007) Determinants of reduction of coronary flow reserve in patients with type 2 diabetes mellitus or arterial hypertension without angi-ographically determined epicardial coronary stenosis. Am J Hypertens 20:1283–1290

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rigo, F., Lowenstein, J., Picano, E. (2009). Coronary Flow Reserve. In: Picano, E. (eds) Stress Echocardiography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76466-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76466-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76465-6

  • Online ISBN: 978-3-540-76466-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics