Skip to main content

Soluble Oligomers of the Amyloid β-Protein: Impair Synaptic Plasticity and Behavior

  • Chapter

Part of the book series: Research and Perspectives in Alzheimer's Disease ((ALZHEIMER))

Abstract

The central quest of research on Alzheimer’s disease (AD) is to identify precisely what molecular process first interferes with episodic declarative memory and then prevent that process. During the last 25 years, neuropathological, biochemical, genetic, cell biological and even therapeutic studies in humans have all supported the hypothesis that the gradual cerebral accumulation of soluble and insoluble assemblies of the amyloid β-protein (Aβ) in limbic and association cortices triggers a cascade of biochemical and cellular alterations that produce the clinical phenotype. Missense mutations in presenilin, an unusual intramembrane aspartyl protease, cause rare forms of early-onset AD by altering its cleavage of the amyloid precursor protein (APP) transmembrane domain to increase the ratio of Aβ42 to Aβ40 peptides, thereby promoting Aβ oligomerization. The reasons for elevated cortical Aβ42 levels in most patients with typical, late-onset AD are unknown, but based on recent work, these could turn out to include augmented neuronal release of Aβ during some kinds of synaptic activity. Elevated levels of soluble Aβ42 monomers enable formation of soluble oligomers that can diffuse into synaptic clefts. We have identified certain APP-expressing cultured cell lines that form low-n oligomers intracellularly and release a portion of them into the medium. We find that these naturally secreted soluble oligomers – at picomolar concentrations – can disrupt hippocampal LTP in slices and in vivo and can also impair the memory of a complex learned behavior in rats. Aβ trimers appear to be more potent in disrupting LTP than are dimers. The cell-derived oligomers also decrease dendritic spine density in organotypic hippocampal slice cultures, and this decrease can be prevented by administration of Aβ antibodies or small-molecule modulators of Aβ aggregation. The signaling pathways mediating these effects are under study. Intensive attempts to develop safe and effective Aβ-lowering agents have brought us into human trials that have provided preliminary evidence of cognitive benefit. This therapeutic progress has been accompanied by advances in imaging the Aβ deposits non-invasively in humans. A new diagnostic-therapeutic paradigm to successfully address AD and its harbinger, mild cognitive impairment-amnestic type, is emerging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB (2003) Amyloid β–protein (Aβ) assembly: Aβ 40 and Aβ 42 oligomerize through distinct pathways. Proc Natl Acad Sci USA 100:330–335.

    Article  PubMed  CAS  Google Scholar 

  • Bitan G, Teplow DB (2005) Preparation of aggregate-free, low molecular weight amyloid-beta for assembly and toxicity assays. Methods Mol Biol 299:3–9.

    PubMed  CAS  Google Scholar 

  • Bloodgood BL, Sabatini BL (2007) Nonlinear regulation of unitary synaptic signals by CaV(2.3) voltage-sensitive calcium channels located in dendritic spines. Neuron 53:249–260.

    Article  PubMed  CAS  Google Scholar 

  • Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC, Small GW (2000) Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 343:450–456.

    Article  PubMed  CAS  Google Scholar 

  • Busciglio J, Gabuzda DH, Matsudaira P, Yankner BA (1993) Generation of β-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc Natl Acad Sci. USA 90:2092–2096.

    Article  CAS  Google Scholar 

  • Caughey B, Lansbur, PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298.

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Gu Y, Hasegawa H, Ruan X, Arawaka S, Fraser P, Westaway D, Mount H, St George-Hyslop P (2002). Presenilin 1 mutations activate gamma 42-secretase but reciprocally inhibit epsilon-secretase cleavage of amyloid precursor protein (APP) and S3-cleavage of notch. Biol Chem 277:36521–36526.

    Article  CAS  Google Scholar 

  • Cleary J, Hittner JM, Semotuk M, Mantyh P, O’Hare E (1995) Beta-amyloid(1-40) effects on behavior and memory. Brain Res 682:69–74.

    Article  PubMed  CAS  Google Scholar 

  • Cleary JP, Walsh D, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH (2005) Natural oligomers of the amyloid β-protein specifically disrupt cognitive function. Nature Neurosci 8:79–84.

    Article  PubMed  CAS  Google Scholar 

  • Cummings BJ, Pike CJ, Shankle R, Cotman CW (1996). Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer’s disease. Neurobiol Aging 17:921–933.

    Article  PubMed  CAS  Google Scholar 

  • Davies CA, Mann DM, Sumpter PQ, Yates PO (1987). A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J Neurol Sci 78:151–164.

    Article  PubMed  CAS  Google Scholar 

  • Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, DeLong CA, Wu S, Wu X, Holtzman DM, Paul SM (2002) Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nature Neurosci 5:452–457.

    PubMed  CAS  Google Scholar 

  • Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399:66–70.

    Article  PubMed  CAS  Google Scholar 

  • Enya M, Morishima-Kawashima M, Yoshimura M, Shinkai Y, Kusui K, Khan K, Games D, Schenk D, Sugihara S, Yamaguchi H, Ihara Y (1999) Appearance of sodium dodecyl sulfate-stable amyloid beta-protein (Abeta) dimer in the cortex during aging. Am J Pathol 154:271–279.

    PubMed  CAS  Google Scholar 

  • Frautschy SA, Hu W, Kim P, Miller SA, Chu T, Harris-White ME, Cole GM (2001) Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol Aging 22:993–1005.

    Article  PubMed  CAS  Google Scholar 

  • Funato H, Enya M, Yoshimura M, Morishima-Kawashima M, Ihara Y (1999) Presence of sodium dodecyl sulfate-stable amyloid beta-protein dimers in the hippocampus CA1 not exhibiting neurofibrillary tangle formation. Am J Pathol 155:23–28.

    PubMed  CAS  Google Scholar 

  • Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, Krafft GA, Klein WL (2003) Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA 100:10417–10422.

    Article  PubMed  CAS  Google Scholar 

  • Gravina SA, Ho L, Eckman CB, Long KE, Otvos LJ, Younkin LH, Suzuki N, Younkin SG (1995). Amyloid β protein (Aβ) in Alzheimer’s disease brain. J Biol Chem 270:7013–7016.

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Schlossmacher M, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski B, Lieberburg I, Koo EH, Schenk D, Teplow D, Selkoe D (1992) Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325.

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Selkoe, DJ (2002). The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356.

    Article  PubMed  CAS  Google Scholar 

  • Hardy JA, Higgins GA (1992). Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185.

    Article  PubMed  CAS  Google Scholar 

  • Harper JD, Wong SS, Lieber CM, Lansbury Jr PT (1997) Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem Biol 4:119–125.

    Article  PubMed  CAS  Google Scholar 

  • Hartley D, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM, Teplow DB, Selkoe DJ (1999) Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 19:8876–8884.

    PubMed  CAS  Google Scholar 

  • Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, Malinow R (2006) AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52:831–843.

    Article  PubMed  CAS  Google Scholar 

  • Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina H, Ihara Y (1994) Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 13:45–53.

    Article  PubMed  CAS  Google Scholar 

  • Jourdain P, Fukunaga K, Muller D (2003) Calcium/calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation. J Neurosci 23:10645–10649.

    PubMed  CAS  Google Scholar 

  • Kawarabayashi T, Shoji M, Younkin LH, Wen-Lang L, Dickson DW, Murakami T, Matsubara E, Abe K, Ashe KH, Younkin SG (2004) Dimeric amyloid beta protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 24:3801–3809.

    Article  PubMed  CAS  Google Scholar 

  • Klein WL, Krafft GA, Finch CE (2001) Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24:219–224.

    Article  PubMed  CAS  Google Scholar 

  • Klyubin I, Walsh DM, Lemere CA, Cullen WK, Shankar GM, Betts V, Spooner ET, Jiang L, Anwyl R, Selkoe DJ, Rowan MJ (2005) Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nature Med 11:556–561.

    Article  PubMed  CAS  Google Scholar 

  • Kotilinek LA, Bacskai B, Westerman M, Kawarabayashi T, Younkin L, Hyman BT, Younkin S, Ashe KH (2002) Reversible memory loss in a mouse transgenic model of Alzheimer’s disease. J Neurosci 22:6331–6335.

    PubMed  CAS  Google Scholar 

  • Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Iosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfribrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453.

    Article  PubMed  CAS  Google Scholar 

  • Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT Jr. (2002) Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418:291.

    Article  Google Scholar 

  • Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357.

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21.

    Article  PubMed  CAS  Google Scholar 

  • Maletic-Savatic M, Malinow R, Svoboda K (1999) Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283:1923–1927.

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW Jr., Morris JC (2001) Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology 56:127–129.

    Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004). Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766.

    Article  PubMed  CAS  Google Scholar 

  • McDonald MP, Dahl EE, Overmier JB, Mantyh P, Cleary J (1994) Effects of an exogenous beta-amyloid peptide on retention for spatial learning. Behav Neural Biol 62:60–67.

    Article  PubMed  CAS  Google Scholar 

  • McLaurin J, Kierstead ME, Brown ME, Hawkes CA, Lambermon MH, Phinney AL, Darabie AA, Cousins JE, French JE, Lan MF, Chen F, Wong SS, Mount HT, Fraser PE, Westaway D, St George-Hyslop P (2006) Cyclohexanehexol inhibitors of Abeta aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nature Med 12:801–808.

    Article  PubMed  CAS  Google Scholar 

  • McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866.

    Article  PubMed  CAS  Google Scholar 

  • Mulkey RM, Endo S, Shenolikar S, Malenka RC (1994) Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369:486–488.

    Article  PubMed  CAS  Google Scholar 

  • Nagerl UV, Eberhorn N, Cambridge SB, Bonhoeffer T (2004) Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44:759–767.

    Article  PubMed  Google Scholar 

  • Näslund J, Haroutunian V, Mohs R, Davis K, Davies P, Greengard P, Buxbaum J (2000) Correlation between elevated levels of amyloid β-peptides in the brain and cognitive decline. JAMA 283:1571–1577.

    Article  PubMed  Google Scholar 

  • Nicoll RA, Malenka RC (1999) Expression mechanisms underlying NMDA receptor-dependent long-term potentiation. Ann NY Acad Sci 868:515–525.

    Article  PubMed  CAS  Google Scholar 

  • O’Hare E, Weldon DT, Mantyh PW, Ghilardi JR, Finke MP, Kuskowski MA, Maggio JE, Shephard RA, Cleary J (1999) Delayed behavioral effects following intrahippocampal injection of aggregated A beta (1-42). Brain Res 815:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308.

    Article  PubMed  CAS  Google Scholar 

  • Podlisny MB, Ostaszewski BL, Squazzo SL, Koo EH, Rydel RE, Teplow DB, Selkoe DJ (1995) Aggregation of secreted amyloid β-protein into SDS-stable oligomers in cell culture. J Biol Chem 270:9564–9570.

    Article  PubMed  CAS  Google Scholar 

  • Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45:358–368.

    Article  PubMed  CAS  Google Scholar 

  • Roher AE, Chaney MO, Kuo Y-M, Webster SD, Stine WB, Haverkamp LJ, Woods AS, Cotter RJ, Tuohy JM, Krafft GA, Bonnell BS, Emmerling MR (1996) Morphology and toxicity of Aβ-(1-42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease. J Biol Chem 271:20631–20635.

    Article  PubMed  CAS  Google Scholar 

  • Saido TC, Iwatsubo T, Mann DMA, Shimada H, Ihara Y, Kawashima S (1995) Dominant and differential deposition of distinct β-amyloid peptide species, Aβ N3(p3), in senile plaques. Neuron 14:457–466.

    Article  PubMed  CAS  Google Scholar 

  • Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W, Larson E, Levy-Lahad E, Viitanen M, Peskind E, Poorkaj P, Schellenberg G, Tanzi R, Wasco W, Lannfelt L, Selkoe D, Younkin S (1996).Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature Med 2:864–870.

    Google Scholar 

  • Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6:487–498.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791.

    Article  PubMed  CAS  Google Scholar 

  • Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmache, MG, Whaley J, Swindlehurst C, McCormack R, Wolfert R, Selkoe DJ, Lieberburg I, Schenk D (1992) Isolation and quantitation of soluble Alzheimer’s β-peptide from biological fluids. Nature 359:325–327.

    Article  PubMed  CAS  Google Scholar 

  • Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866–2875.

    Article  PubMed  CAS  Google Scholar 

  • Shoji M, Golde TE, Ghiso J, Cheung TT, Estus S, Shaffer LM, Cai X, McKay DM, Tintner R, Frangione B, Younkin SG (1992) Production of the Alzheimer amyloid β protein by normal proteolytic processing. Science 258:126–129.

    Article  PubMed  CAS  Google Scholar 

  • Small GW, Ercoli LM, Silverman DH, Huang SC, Komo S, Bookheimer SY, Lavretsky H, Miller K, Siddarth P, Rasgon NL, Mazziotta JC, Saxena S, Wu HM, Mega MS, Cummings JL, Saunders AM, Pericak-Vance MA, Roses AD, Barrio JR, Phelps ME (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci USA 97:6037–6042.

    Article  PubMed  CAS  Google Scholar 

  • Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, Gouras GK, Greengard P (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nature Neurosci 8:1051–1058.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney WA, Luedtke J, McDonald MP, Overmier JB (1997) Intrahippocampal injections of exogenous beta-amyloid induce postdelay errors in an eight-arm radial maze. Neurobiol Learn Mem 68:97–101.

    Article  PubMed  CAS  Google Scholar 

  • Teplow DB (1998) Structural and kinetic features of amyloid beta-protein fibrillogenesis. Amyloid 5:121–142.

    PubMed  CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzma, R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580.

    Article  PubMed  CAS  Google Scholar 

  • Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ (2006) Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol 572:477–492.

    Article  PubMed  CAS  Google Scholar 

  • Townsend M, Mehta T, Selkoe, DJ (2007). Soluble amyloid β-protein inhibits specific signal transduction cascades common to the insulin reception pathway. J Biol Chem, in press.

    Google Scholar 

  • Vigo-Pelfrey C, Lee D, Keim PS, Lieberburg I, Schenk D (1993) Characterization of β-amyloid peptide from human cerebrospinal fluid. J Neurochem 61:1965–1968.

    Article  PubMed  CAS  Google Scholar 

  • Walsh D, Klyubin I, Fadeeva J, Cullen WK, Anwyl R, Wolfe M, Rowan M, Selkoe D (2002) Naturally secreted oligomers of the Alzheimer amyloid β-protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539.

    Article  PubMed  CAS  Google Scholar 

  • Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, Benedek GB, Selkoe DJ, Teplow DB (1999) Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 274:25945–25952.

    Article  PubMed  CAS  Google Scholar 

  • Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ (2000) Detection of intracellular oligomers of amyloid β-protein in cells derived from human brain. Biochemistry 39:10831–10839.

    Article  PubMed  CAS  Google Scholar 

  • Walsh DM, Hartley DM, Selkoe DJ (2003) The many faces of Aβ: Structures and activity. Curr Med Chem – Immun Endoc Metab Agents 3:277–291.

    Article  CAS  Google Scholar 

  • Walsh DM, Townsend TM, Podlisny MB, Shankar, GM, Fadeeva J, El-Agnaf O, Hartley DM, Selkoe DJ (2005) Certain inhibitors of synthetic Aβ fibrillogenesis block oligomerization of natural Aβ and thereby rescue long term potentiation. J Neurosci 25:2455–2462.

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Sweeney D, Gandy SE, Sisodia, SS (1996) The profile of soluble amyloid b protein in cultured cell media. Detection and quantificaiton of amyloid β protein and variants by immunoprecipitation-mass spectrometry. J Biol Chem 271:31894–31902.

    Article  PubMed  CAS  Google Scholar 

  • Xia W, Zhang J, Kholodenko D, Citron M, Podlisny MB, Teplow DB, Haass C, Seubert P, Koo EH, Selkoe DJ (1997) Enhanced production and oligomerization of the 42-residue amyloid β-protein by Chinese hamster ovary cells stably expressing mutant presenilins. J Biol Chem 272:7977–7982.

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Homma KJ, Poo MM (2004). Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44:749–757.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Selkoe, D. (2008). Soluble Oligomers of the Amyloid β-Protein: Impair Synaptic Plasticity and Behavior. In: Selkoe, D., Triller, A., Christen, Y. (eds) Synaptic Plasticity and the Mechanism of Alzheimer's Disease. Research and Perspectives in Alzheimer's Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76330-7_8

Download citation

Publish with us

Policies and ethics