Skip to main content

Abstract

Many modern molecular labeling techniques result in bright point signals. Signals from molecules that are detected directly inside a cell can be captured by fluorescence microscopy. Signals representing different types of molecules may be randomly distributed in the cells or show systematic patterns indicating that the corresponding molecules have specific, non-random localizations and functions in the cell. Assessing this information requires high speed robust image segmentation followed by signal detection, and finally pattern analysis. We present and discuss this type of methods and show an example of how the distribution of different variants of mitochondrial DNA can be analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banér, J., Nilsson, M., Mendel-Hartvig, M., Landegren, U.: Signal amplification of padlock probes by rolling circle replication. Nucleic Acid Research 26, 5073–5078 (1998)

    Article  Google Scholar 

  2. Beucher, S.: The watershed transformation applied to image segmentation. Scanning Microscopy 6, 299–314 (1992)

    Google Scholar 

  3. Beucher, S., Lantuéjoul, C.: Use of watersheds in contour detection. In: International Workshop on Image Processing: Real-time and Motion Detection/Estimation, Rennes, France (September 1979)

    Google Scholar 

  4. Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics and Image Processing 34, 344–371 (1986)

    Article  Google Scholar 

  5. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol. 1, 2. Addison-Wesley, Reading, Mass. (1992)

    Google Scholar 

  6. Karlsson, P., Lindblad, J.: Segmentation and separation of point like fluorescent markers in digital images. In: Proceedings of 2004 IEEE International Symposium on Biomedical Imaging, pp. 1291–1294. IEEE Computer Society Press, Washington D.C., USA (2004)

    Google Scholar 

  7. Koch, J., Kolvraa, S., Petersen, K., Gregersen, N., Bolund, L.: Oligonucleotide-priming methods for the chromosome-specific labeling of alpha satellite dna in situ. Chromosoma 98, 259–265 (1988)

    Article  Google Scholar 

  8. Landegren, U., Kaiser, R., Sanders, J., Hood, L.: A ligase-mediated gene detection technique. Science 241, 1077–1080 (1988)

    Article  Google Scholar 

  9. Landini, G., Othman, I.E.: Estimation of tissue layer level by sequential morphological reconstruction. Journal of Microscopy 209(2), 118–125 (2003)

    Article  MathSciNet  Google Scholar 

  10. Larsson, C., Koch, J., Nygren, A., Janssen, G., Raap, A.K., Landegren, U., Nilsson, M.: In situ genotyping individual dna molecules by target- primed rolling- circle amplification of padlock probes. Nature Methods 1, 227–232 (2004)

    Article  Google Scholar 

  11. Lockett, S.J., Sudar, D., Thompson, C.T., Pinkel, D., Gray, J.W.: Efficient, interactive, and three-dimensional segmentation of cell nuclei in thick tissue sections. Cytometry 31, 275–286 (1998)

    Article  Google Scholar 

  12. Malpica, N., de Solorzano, C.O., Vaquero, J.J., Santos, A., Vallcorba, I., Garcia-Sagredo, J.M., del Pozo, F.: Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry 28(4), 289–297 (1997)

    Article  Google Scholar 

  13. Manders, E.M.M., Hoebe, R., Strackee, J., Vossepoel, A.M., Aten, J.A.: Largest contour segmentation: a tool for the localization of spots in confocal images. Cytometry 23, 15–21 (1996)

    Article  Google Scholar 

  14. Meyer, F., Beucher, S.: Morphological segmentation. Journal of Visual Communication and Image Representation 1(1), 21–46 (1990)

    Article  Google Scholar 

  15. Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchial segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(12), 1163–1173 (1996)

    Article  Google Scholar 

  16. Nilsson, M., Malmgren, H., Samiotaki, M., Kwiatkowski, M., Chowdhary, B.P., Landegren, U.: Padlock probes: Circularizing oligonucleotides for localized dna detection. Science 265, 2085–2088 (1994)

    Article  Google Scholar 

  17. de Solorzano, C.O., Garcia Rodriguez, E., Jones, A., Pinkel, D., Gray, J., Sudar, D., Lockett, S.: Segmentation of confocal microscope images of cell nuclei in thick tissue sections. Journal of Microscopy 193, 212–226 (1999)

    Article  Google Scholar 

  18. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. on System Man and Cybernetics 9(1), 62–69 (1979)

    Article  MathSciNet  Google Scholar 

  19. Perner, P.: An architecture for a CBR image segmentation system. IEEE Journal on Engineering Application in Artificial Intelligence, Engineering Applications of Artificial Intelligence 12(6), 749–759 (1999)

    Article  Google Scholar 

  20. Perner, P., Perner, H., Müller, B.: An mining knowledge for HEp-2 cell image classification. Journal Artificial Intelligence in Medicine 26, 161–173 (2002)

    Article  Google Scholar 

  21. Sahoo, P.K., Soltani, S., Wong, A.K.C., Chen, Y.C.: A survey of thresholding techniques. Computer Vision, Graphics and Image Processing 41, 233–260 (1988)

    Article  Google Scholar 

  22. Vincent, L.: Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms. IEEE Trans. on Image Processing 2(2), 176–201 (1993)

    Article  Google Scholar 

  23. Wählby, C., Sintorn, I.-M., Erlandsson, F., Borgefors, G., Bengtsson, E.: Combining intensity, edge, and shape information for 2D and 3D segmentation of cell nuclei on tissue sections. Journal of Microscopy 215(1), 67–76 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Petra Perner Ovidio Salvetti

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wählby, C., Karlsson, P., Henriksson, S., Larsson, C., Nilsson, M., Bengtsson, E. (2007). Finding Cells, Finding Molecules, Finding Patterns. In: Perner, P., Salvetti, O. (eds) Advances in Mass Data Analysis of Signals and Images in Medicine, Biotechnology and Chemistry. MDA 2007. Lecture Notes in Computer Science(), vol 4826. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76300-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76300-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76299-7

  • Online ISBN: 978-3-540-76300-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics