Skip to main content

Association Between Single Nucleotide Polymorphisms and Susceptibility for the Development of Adverse Effects Resulting from Radiation Therapy

  • Chapter
Cured II ■ LENT Cancer Survivorship Research and Education

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 521 Accesses

Abstract

A small, but signifi cant number of radiotherapy patients develop adverse responses to treatment, manifested as either normal tissue/organ damage or the development of a radiation-induced cancer. The ability to predict which patients are at greatest risk for radiation toxicity would be of great benefi t in optimizing treatment decisions. One promising approach for the development of a predictive assay is through the use of genetic information. The main source of genetic variation among individuals is single nucleotide polymorphisms. Much of the early work to identify single nucleotide polymorphisms (SNPs) associated with the development of radiation injury focused on candidate genes. These studies have provided results indicative of a genetic basis for radiosensitivity, but it is clear that this approach is too limited in its scope to identify the SNPs that could serve as the basis for a predictive assay with clinical applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Safwat A, Bentzen SM, Turesson I, Hendry JH (2002) Deterministic rather than stochastic factors explain most of the variation in the expression of skin telangiectasia after radiotherapy. Int J Radiat Oncol Biol Phys 52:198–204

    PubMed  Google Scholar 

  2. Brenner DJ, Curtis RE, Hall EJ, Ron E (2000) Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery. Cancer 88:398–406

    Article  CAS  PubMed  Google Scholar 

  3. Boice JD Jr, Engholm G, Kleinerman R et al (1988) Radiation dose and second cancer risk in patients treated for cancer of the cervix. Radiat Res 116:3–55

    Article  PubMed  Google Scholar 

  4. Horwich A, Swerdlow AJ (2004) Second primary breast cancer after Hodgkin’s disease. Br J Cancer 90:294–298

    Article  CAS  PubMed  Google Scholar 

  5. Kenney LB, Yasui Y, Inskip PD et al (2004) Breast cancer after childhood cancer: a report from the Childhood Cancer Survivor Study. Ann Intern Med 141:590–597

    PubMed  Google Scholar 

  6. Perkins JL, Liu Y, Mitby PA et al (2005) Nonmelanoma skin cancer in survivors of childhood and adolescent cancer: a report from the childhood cancer survivor study. J Clin Oncol 23:3733–3741

    Article  PubMed  Google Scholar 

  7. Sigurdson AJ, Ronckers CM, Mertens AC et al (2005) Primary thyroid cancer after a first tumour in childhood (the Childhood Cancer Survivor Study): a nested casecontrol study. Lancet 365:2014–2023

    Article  PubMed  Google Scholar 

  8. Bassal M, Mertens AC, Taylor L et al (2006) Risk of selected subsequent carcinomas in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol 24:476–483

    Article  PubMed  Google Scholar 

  9. Ronckers CM, Sigurdson AJ, Stovall M et al (2006) Thyroid cancer in childhood cancer survivors: a detailed evaluation of radiation dose response and its modifi ers. Radiat Res 166:618–628

    Article  CAS  PubMed  Google Scholar 

  10. Neglia JP, Robison LL, Stovall M et al (2006) New primary neoplasms of the central nervous system in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Natl Cancer Inst 98:1528–1537

    PubMed  Google Scholar 

  11. Henderson TO, Whitton J, Stovall M et al (2007) Secondary sarcomas in childhood cancer survivors: a report from the Childhood Cancer Survivor Study. J Natl Cancer Inst 99:300–308

    Article  PubMed  Google Scholar 

  12. Dinu I, Liu Y, Leisenring W et al (2007) Prediction of second malignant neoplasm incidence in a large cohort of long-term survivors of childhood cancers. Pediatr Blood Cancer

    Google Scholar 

  13. Fletcher GH (1988) Regaud lecture perspectives on the history of radiotherapy. Radiother Oncol 12:iii-v, 253–271

    Article  Google Scholar 

  14. Tucker SL, Geara FB, Peters LJ, Brock WA (1996) How much could the radiotherapy dose be altered for individual patients based on a predictive assay of normal-tissue radiosensitivity? Radiother Oncol 38:103–113

    Article  CAS  PubMed  Google Scholar 

  15. Mackay RI, Hendry JH (1999) The modelled benefi ts of individualizing radiotherapy patients’ dose using cellular radiosensitivity assays with inherent variability. Radiother Oncol 50:67–75

    Article  CAS  PubMed  Google Scholar 

  16. Evans WE, Relling MV (2004) Moving towards individualized medicine with pharmacogenomics. Nature 429:464–468

    Article  CAS  PubMed  Google Scholar 

  17. Fierz W (2004) Challenge of personalized health care: to what extent is medicine already individualized and what are the future trends? Med Sci Monit 10:RA111–123

    PubMed  Google Scholar 

  18. Gurwitz D, Livshits G (2006) Personalized medicine Europe: health, genes and society: Tel-Aviv University, Tel-Aviv, Israel, June 19–21, 2005. Eur J Hum Genet 14:376–380

    Article  PubMed  Google Scholar 

  19. Aziz NM (2007) Cancer survivorship research: state of knowledge, challenges and opportunities. Acta Oncol 46:417–432

    Article  PubMed  Google Scholar 

  20. Agren A, Brahme A, Turesson I (1990) Optimization of uncomplicated control for head and neck tumors. Int J Radiat Oncol Biol Phys 19:1077–1085

    CAS  PubMed  Google Scholar 

  21. MacKay RI, Niemierko A, Goitein M, Hendry JH (1998) Potential clinical impact of normal-tissue intrinsic radiosensitivity testing. Radiother Oncol 46:215–216

    Article  CAS  PubMed  Google Scholar 

  22. Ho AY, Atencio DP, Peters S et al (2006) Genetic predictors of adverse radiotherapy effects: the Gene-PARE project. Int J Radiat Oncol Biol Phys 65:646–655

    PubMed  Google Scholar 

  23. Baumann M, Holscher T, Begg AC (2003) Towards genetic prediction of radiation responses: ESTRO’s GENEPI project. Radiother Oncol 69:121–125

    Article  PubMed  Google Scholar 

  24. Suga T, Ishikawa A, Kohda M et al (2007) Haplotypebased analysis of genes associated with risk of adverse skin reactions after radiotherapy in breast cancer patients. Int J Radiat Oncol Biol Phys 69:685–693

    CAS  PubMed  Google Scholar 

  25. Christensen K, Murray JC (2007) What genome-wide association studies can do for medicine. N Engl J Med 356:1094–1097

    Article  CAS  PubMed  Google Scholar 

  26. Frazer KA, Ballinger DG, Cox DR et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Article  CAS  PubMed  Google Scholar 

  27. Fan JB, Gunderson KL, Bibikova M et al (2006) Illumina universal bead arrays. Methods Enzymol 410:57–73

    Article  CAS  PubMed  Google Scholar 

  28. Ragoussis J, Elvidge G (2006) Affymetrix GeneChip system: moving from research to the clinic. Expert Rev Mol Diagn 6:145–152

    Article  CAS  PubMed  Google Scholar 

  29. Lango H, Weedon MN (2008) What will whole genome searches for susceptibility genes for common complex disease offer to clinical practice? J Intern Med 263:16–27

    Article  CAS  PubMed  Google Scholar 

  30. Hall EJ, Schiff PB, Hanks GE et al (1998) A preliminary report: frequency of A-T heterozygotes among prostate cancer patients with severe late responses to radiation therapy. Cancer J Sci Am 4:385–389

    CAS  PubMed  Google Scholar 

  31. Duell EJ, Millikan RC, Pittman GS et al (2001) Polymorphisms in the DNA repair gene XRCC1 and breast cancer. Cancer Epidemiol Biomarkers Prev 10:217–222

    CAS  PubMed  Google Scholar 

  32. Severin DM, Leong T, Cassidy B et al (2001) Novel DNA sequence variants in the hHR21 DNA repair gene in radiosensitive cancer patients. Int J Radiat Oncol Biol Phys 50:1323–1331

    CAS  PubMed  Google Scholar 

  33. Iannuzzi CM, Atencio DP, Green S, Stock RG, Rosenstein BS (2002) ATM mutations in female breast cancer patients predict for an increase in radiation-induced late effects. Int J Radiat Oncol Biol Phys 52:606–613

    Article  CAS  PubMed  Google Scholar 

  34. Offit K, Gilad S, Paglin S et al (2002) Rare variants of ATM and risk for Hodgkin’s disease and radiation-associated breast cancers. Clin Cancer Res 8:3813–3819

    CAS  PubMed  Google Scholar 

  35. Andreassen CN, Alsner J, Overgaard M, Overgaard J (2003) Prediction of normal tissue radiosensitivity from polymorphisms in candidate genes. Radiother Oncol 69:127–135

    Article  CAS  PubMed  Google Scholar 

  36. Angele S, Romestaing P, Moullan N et al (2003) ATM haplotypes and cellular response to DNA damage: association with breast cancer risk and clinical radiosensitivity. Cancer Res 63:8717–8725

    CAS  PubMed  Google Scholar 

  37. Bremer M, Klopper K, Yamini P, Bendix-Waltes R, Dork T, Karstens JH (2003) Clinical radiosensitivity in breast cancer patients carrying pathogenic ATM gene mutations: no observation of increased radiation-induced acute or late effects. Radiother Oncol 69:155–160

    Article  CAS  PubMed  Google Scholar 

  38. Moullan N, Cox DG, Angele S, Romestaing P, Gerard JP, Hall J (2003) Polymorphisms in the DNA repai gene XRCC1, breast cancer risk, and response to radiotherapy. Cancer Epidemiol Biomarkers Prev 12(11 Pt 1): 1168–1174

    CAS  PubMed  Google Scholar 

  39. Quarmby S, Fakhoury H, Levine E et al (2003) Association of transforming growth factor beta-1 single nucleotide polymorphisms with radiation-induced damage to normal tissues in breast cancer patients. Int J Radiat Biol 79:137–143

    CAS  PubMed  Google Scholar 

  40. Andreassen CN, Alsner J, Overgaard J et al (2005) TGFB1 polymorphisms are associated with risk of late normal tissue complications in the breast after radiotherapy for early breast cancer. Radiother Oncol 75:18–21

    Article  CAS  PubMed  Google Scholar 

  41. De Ruyck K, Van Eijkeren M, Claes K et al (2005) Radiation-induced damage to normal tissues after radiotherapy in patients treated for gynecologic tumors: association with single nucleotide polymorphisms in XRCC1, XRCC3, and OGG1 genes and in vitro chromosomal radiosensitivity in lymphocytes. Int J Radiat Oncol Biol Phys 62:1140–1149

    PubMed  Google Scholar 

  42. Millikan RC, Player JS, Decotret AR, Tse CK, Keku T (2005) Polymorphisms in DNA repair genes, medical exposure to ionizing radiation, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 14:2326–2334

    Article  CAS  PubMed  Google Scholar 

  43. Andreassen CN, Overgaard J, Alsner J et al (2006) ATM sequence variants and risk of radiation-induced subcutaneous fibrosis after postmastectomy radiotherapy. Int J Radiat Oncol Biol Phys 64:776–783

    PubMed  Google Scholar 

  44. Andreassen CN, Alsner J, Overgaard M, Sorensen FB, Overgaard J (2006) Risk of radiation-induced subcutaneous fibrosis in relation to single nucleotide polymorphisms in TGFB1, SOD2, XRCC1, XRCC3, APEX and ATM — a study based on DNA from formalin fixed paraffi n embedded tissue samples. Int J Radiat Biol 82:577–586

    Article  CAS  PubMed  Google Scholar 

  45. Cesaretti J, Stock R, Atencio D et al (2006) A genetically determined dose volume histogram predicts for rectal bleeding among patients treated with prostate brachytherapy. Int J Radiat Oncol Biol Phys 66:S37–S37

    Google Scholar 

  46. Damaraju S, Murray D, Dufour J et al (2006) Association of DNA repair and steroid metabolism gene polymorphisms with clinical late toxicity in patients treated with conformal radiotherapy for prostate cancer. Clin Cancer Res 12:2545–2554

    Article  CAS  PubMed  Google Scholar 

  47. De Ruyck K, Van Eijkeren M, Claes K et al (2006) TGFbeta1 polymorphisms and late clinical radiosensitivity in patients treated for gynecologic tumors. Int J Radiat Oncol Biol Phys 65:1240–1248

    PubMed  Google Scholar 

  48. Cesaretti JA, Stock RG, Atencio DP et al (2007) A genetically determined dose-volume histogram predicts for rectal bleeding among patients treated with prostate brachytherapy. Int J Radiat Oncol Biol Phys 66:S37–S37

    Google Scholar 

  49. Edvardsen H, Tefre T, Jansen L et al (2007) Linkage disequilibrium pattern of the ATM gene in breast cancer patients and controls; association of SNPs and haplotypes to radio-sensitivity and post-lumpectomy local recurrence. Radiat Oncol 2:25

    Article  PubMed  CAS  Google Scholar 

  50. Giotopoulos G, Symonds RP, Foweraker K et al (2007) The late radiotherapy normal tissue injury phenotypes of telangiectasia, fibrosis and atrophy in breast cancer patients have distinct genotype-dependent causes. Br J Cancer 96:1001–1007

    Article  CAS  PubMed  Google Scholar 

  51. Ho AY, Fan G, Atencio DP et al (2007) Possession of ATM sequence variants as predictor for late normal tissue responses in breast cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys 69:677–684

    PubMed  Google Scholar 

  52. Meyer A, Wilhelm B, Dork T et al (2007) ATM missense variant P1054R predisposes to prostate cancer. Radiother Oncol 83:283–288

    Article  CAS  PubMed  Google Scholar 

  53. Peters CA, Stock RG, Cesaretti JA et al (2007) TGFB1 single nucleotide polymorphisms are associated with adverse quality of life in prostate cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys 70:752–759

    PubMed  Google Scholar 

  54. Edvardsen H, Kristensen VN, Grenaker Alnaes GI et al (2007) Germline glutathione S-transferase variants in breast cancer: relation to diagnosis and cutaneous longterm adverse effects after two fractionation patterns of radiotherapy. Int J Radiat Oncol Biol Phys 67:1163–1171

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosenstein, B.S. (2008). Association Between Single Nucleotide Polymorphisms and Susceptibility for the Development of Adverse Effects Resulting from Radiation Therapy. In: Rubin, P., Constine, L.S., Marks, L.B., Okunieff, P. (eds) Cured II ■ LENT Cancer Survivorship Research and Education. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76271-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76271-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76270-6

  • Online ISBN: 978-3-540-76271-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics