Skip to main content

Late Toxicity from Hypofractionated Stereotactic Body Radiation

  • Chapter
Cured II ■ LENT Cancer Survivorship Research and Education

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Stereotactic body radiation therapy (SBRT) utilizes a three dimensional coordinate system to achieve more reproducible patient set-up [1, 2]. With SBRT, the margins for set-up uncertainty can be reduced, allowing greater volume sparing of the surrounding normal tissues. Since SBRT yields a reduced volume of normal tissue exposure, SBRT has been used to increase the fractional dose of radiation (hypofractionation) in an attempt to intensify the dose delivery without incrementally increasing the risk of normal tissue damage. This is becoming an important approach to treating discrete tumors, and has yielded impressive local control of treated tumors without significant toxicity. The benefit of SBRT is to achieve improved local control compared to conventional radiation, via improved target localization and more intense doles delivery, without the added toxicity. Arguably, SBRT can achieve similar or even improved outcome over surgical resection. One advantage that SBRT has over a limited resection (i.e. one that does not achieve wide margins) is that the penumbra dose around the target treats microscopic disease [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kavanagh BD, McGarry RC, Timmerman RD (2006) Extracranial radiosurgery (stereotactic body radiation therapy) for oligometastases. Semin Radiat Oncol 16:77–84

    Article  PubMed  Google Scholar 

  2. Timmerman RD, Kavanagh BD, Cho LC et al (2007) Stereotactic body radiation therapy in multiple organ sites. J Clin Oncol 25:947–952

    Article  PubMed  Google Scholar 

  3. Baumert BG, Rutten I, Dehing-Oberije C et al (2006) A pathology-based substrate for target definition in radiosurgery of brain metastases. Int J Radiat Oncol Biol Phys 66:187–194

    PubMed  Google Scholar 

  4. Milano MT, Constine LS, Okunieff P (2007) Normal tissue tolerance dose metrics for radiation therapy of major organs. Semin Radiat Oncol 17:131–140

    Article  PubMed  Google Scholar 

  5. Timmerman R, Bastasch M, Saha D et al (2007) Optimizing dose and fractionation for stereotactic body radiation therapy. Normal tissue and tumor control effects with large dose per fraction. Front Radiat Ther Oncol 40:352–365

    Article  PubMed  Google Scholar 

  6. Timmerman RD, Forster KM, Chinsoo Cho L (2005) Extracranial stereotactic radiation delivery. Semin Radiat Oncol 15:202–207

    Article  PubMed  Google Scholar 

  7. Harris JR, Levene MB (1976) Visual complications following irradiation for pituitary adenomas and craniopharyngiomas. Radiology 120:167–171

    CAS  PubMed  Google Scholar 

  8. O’Dell WG, Schell MC, Reynolds D et al (2002) Dose broadening due to target position variability during fractionated breath-held radiation therapy. Med Phys 29:1430–1437

    Article  PubMed  Google Scholar 

  9. Intensity Modulated Radiation Therapy Collaborative Working Group (2001) Intensity-modulated radiotherapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 51:880–914

    Google Scholar 

  10. Glatstein E (2002) Intensity-modulated radiation therapy: the inverse, the converse, and the perverse. Semin Radiat Oncol 12:272–281

    Article  PubMed  Google Scholar 

  11. Goffman TE, Glatstein E (2002) Intensity-modulated radiation therapy. Radiat Res 158:115–117

    Article  CAS  PubMed  Google Scholar 

  12. Hall EJ (2006) Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 65:1–7

    PubMed  Google Scholar 

  13. Hall EJ, Wuu CS (2003) Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 56:83–88

    PubMed  Google Scholar 

  14. Hall EJ (2006) The inaugural Frank Ellis lecture — iatrogenic cancer: the impact of intensity-modulated radiotherapy. Clin Oncol (R Coll Radiol) 18:277–282

    CAS  Google Scholar 

  15. Hall EJ, Giacca AJ (2005) Radiobiology for the radiologist, 6th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  16. Guerrero M, Li XA (2004) Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys Med Biol 49:4825–4835

    Article  CAS  PubMed  Google Scholar 

  17. Hoban PW, Jones LC, Clark BG (1999) Modeling late effects in hypofractionated stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 43:199–210

    CAS  PubMed  Google Scholar 

  18. Chang BK, Timmerman RD (2007) Stereotactic body radiation therapy: a comprehensive review. Am J Clin Oncol 30:637–644

    Article  PubMed  Google Scholar 

  19. Park C, Papiez L, Zhang S et al (2008) Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys 70:847–852

    PubMed  Google Scholar 

  20. Jones B, Dale RG, Finst P et al (2000) Biological equivalent dose assessment of the consequences of hypofractionated radiotherapy. Int J Radiat Oncol Biol Phys 47:1379–1384

    CAS  PubMed  Google Scholar 

  21. Ling CC, Chen CH, Fuks Z (1994) An equation for the dose response of radiation-induced apoptosis: possible incorporation with the LQ model. Radiother Oncol 33:17–22

    Article  CAS  PubMed  Google Scholar 

  22. Garcia-Barros M, Paris F, Cordon-Cardo C et al (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300:1155–1159

    Article  CAS  PubMed  Google Scholar 

  23. Haimovitz-Friedman A, Kan CC, Ehleiter D et al (1994) Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180:525–535

    Article  CAS  PubMed  Google Scholar 

  24. Chmura SJ, Nodzenski E, Beckett MA et al (1997) Loss of ceramide production confers resistance to radiation-induced apoptosis. Cancer Res 57:1270–1275

    CAS  PubMed  Google Scholar 

  25. Lin X, Fuks Z, Kolesnick R (2000) Ceramide mediates radiation-induced death of endothelium. Crit Care Med 28:N87–93

    Article  CAS  PubMed  Google Scholar 

  26. Kolesnick R, Fuks Z (2003) Radiation and ceramide-induced apoptosis. Oncogene 22:5897–5906

    Article  CAS  PubMed  Google Scholar 

  27. Fuks Z, Kolesnick R (2005) Engaging the vascular component of the tumor response. Cancer Cell 8:89–91

    Article  CAS  PubMed  Google Scholar 

  28. Hallahan D, Kuchibhotla J, Wyble C (1996) Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium. Cancer Res 56:5150–5155

    CAS  PubMed  Google Scholar 

  29. Gaugler MH, Squiban C, van der Meeren A et al (1997) Late and persistent up-regulation of intercellular adhesion molecule-1 (ICAM-1) expression by ionizing radiation in human endothelial cells in vitro. Int J Radiat Biol 72:201–209

    Article  CAS  PubMed  Google Scholar 

  30. Chakraborty M, Abrams SI, Camphausen K et al (2003) Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol 170:6338–6347

    CAS  PubMed  Google Scholar 

  31. Lugade AA, Moran JP, Gerber SA et al (2005) Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 174:7516–7523

    CAS  PubMed  Google Scholar 

  32. Reits EA, Hodge JW, Herberts CA et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271

    Article  CAS  PubMed  Google Scholar 

  33. Demaria S, Formenti SC (2007) Sensors of ionizing radiation effects on the immunological microenvironment of cancer. Int J Radiat Biol 83:819–825

    Article  CAS  PubMed  Google Scholar 

  34. Zhang B, Bowerman NA, Salama JK et al (2007) Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med 204:49–55

    Article  CAS  PubMed  Google Scholar 

  35. McBride WH, Chiang CS, Olson JL et al (2004) A sense of danger from radiation. Radiat Res 162:1–19

    Article  CAS  PubMed  Google Scholar 

  36. Chen Y, Williams J, Ding I et al (2002) Radiation pneumonitis and early circulatory cytokine markers. Semin Radiat Oncol 12:26–33

    Article  PubMed  Google Scholar 

  37. Neta R, Okunieff P (1996) Cytokine-induced radiation protection and sensitization. Semin Radiat Oncol 6:306–320

    Article  PubMed  Google Scholar 

  38. Bijl HP, van Luijk P, Coppes RP et al (2002) Dose-volume effects in the rat cervical spinal cord after proton irradiation. Int J Radiat Oncol Biol Phys 52:205–211

    PubMed  Google Scholar 

  39. van der Kogel AJ (1993) Dose-volume effects in the spinal cord. Radiother Oncol 29:105–109

    Article  PubMed  Google Scholar 

  40. Bijl HP, van Luijk P, Coppes RP et al (2006) Influence of adjacent low-dose fields on tolerance to high doses of protons in rat cervical spinal cord. Int J Radiat Oncol Biol Phys 64:1204–1210

    PubMed  Google Scholar 

  41. Bijl HP, van Luijk P, Coppes RP et al (2003) Unexpected changes of rat cervical spinal cord tolerance caused by inhomogeneous dose distributions. Int J Radiat Oncol Biol Phys 57:274–281

    PubMed  Google Scholar 

  42. Philippens ME, Pop LA, Visser AG et al (2007) Dose-volume effects in rat thoracolumbar spinal cord: the effects of nonuniform dose distribution. Int J Radiat Oncol Biol Phys 69:204–213

    PubMed  Google Scholar 

  43. Milano MT, Katz AW, Muhs AG et al (2008) A prospective pilot study of curative-intent stereotactic body radiation therapy in patients with 5 or fewer oligometastatic lesions. Cancer 112:650–658

    Article  PubMed  Google Scholar 

  44. Katz AW, Carey-Sampson M, Muhs AG et al (2007) Hypofractionated stereotactic body radiation therapy (SBRT) for limited hepatic metastases. Int J Radiat Oncol Biol Phys 67:793–798

    PubMed  Google Scholar 

  45. Okunieff P, Petersen AL, Philip A et al (2006) Stereotactic body radiation therapy (SBRT) for lung metastases. Acta Oncol 45:808–817

    Article  PubMed  Google Scholar 

  46. Okunieff P, Morgan D, Niemierko A et al (1995) Radiation dose-response of human tumors. Int J Radiat Oncol Biol Phys 32:1227–1237

    CAS  PubMed  Google Scholar 

  47. Chawla S, Okunieff P, Chen Y et al (2007) Stereotactic body radiation therapy (SBRT) for the treatment of adrenal metastases. First International Symposium on Stereotactic Body Radiation Therapy and Stereotactic Radiosurgery, Orlando, FL

    Google Scholar 

  48. Teh BS, Paulino AC, Lu HH et al (2007) Versatility of the Novalis system to deliver image-guided stereotactic body radiation therapy (SBRT) for various anatomical sites. Technol Cancer Res Treat 6:347–354

    PubMed  Google Scholar 

  49. Carey Sampson M, Katz A, Constine LS (2006) Stereotactic body radiation therapy for extracranial oligometastases: does the sword have a double edge? Semin Radiat Oncol 16:67–76

    Article  PubMed  Google Scholar 

  50. Xia T, Li H, Sun Q et al (2006) Promising clinical outcome of stereotactic body radiation therapy for patients with inoperable Stage I/II non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 66:117–125

    PubMed  Google Scholar 

  51. Fujino M, Shirato H, Onishi H et al (2006) Characteristics of patients who developed radiation pneumonitis requiring steroid therapy after stereotactic irradiation for lung tumors. Cancer J 12:41–46

    Article  PubMed  Google Scholar 

  52. Onimaru R, Fujino M, Yamazaki K et al (2008) Steep dose-response relationship for stage I non-small-cell lung cancer using hypofractionated high-dose irradiation by real-time tumor-tracking radiotherapy. Int J Radiat Oncol Biol Phys 70:374–381

    CAS  PubMed  Google Scholar 

  53. Zimmermann FB, Geinitz H, Schill S et al (2006) Stereotactic hypofractionated radiotherapy in stage I (T1-2 N0 M0) non-small-cell lung cancer (NSCLC). Acta Oncol 45:796–801

    Article  PubMed  Google Scholar 

  54. Blomgren H, Lax I, Goranson H (1998) Radiosurgery for tumors in the body: clinical experience using a new method. J Radiosurg 1:63–74

    Article  Google Scholar 

  55. Song DY, Benedict SH, Cardinale RM et al (2005) Stereotactic body radiation therapy of lung tumors: preliminary experience using normal tissue complication probabilitybased dose limits. Am J Clin Oncol 28:591–596

    Article  PubMed  Google Scholar 

  56. Wulf J, Hadinger U, Oppitz U et al (2001) Stereotactic radiotherapy of targets in the lung and liver. Strahlenther Onkol 177:645–655

    Article  CAS  PubMed  Google Scholar 

  57. Timmerman R, McGarry R, Yiannoutsos C et al (2006) Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol 24:4833–4839

    Article  PubMed  Google Scholar 

  58. Joyner M, Salter BJ, Papanikolaou N et al (2006) Stereotactic body radiation therapy for centrally located lung lesions. Acta Oncol 45:802–807

    Article  PubMed  Google Scholar 

  59. McGarry RC, Papiez L, Williams M et al (2005) Stereotactic body radiation therapy of early-stage non-small-cell lung carcinoma: phase I study. Int J Radiat Oncol Biol Phys 63:1010–1015

    PubMed  Google Scholar 

  60. Onimaru R, Shirato H, Shimizu S et al (2003) Tolerance of organs at risk in small-volume, hypofractionated, image-guided radiotherapy for primary and metastatic lung cancers. Int J Radiat Oncol Biol Phys 56:126–135

    PubMed  Google Scholar 

  61. Nyman J, Johansson KA, Hulten U (2006) Stereotactic hypofractionated radiotherapy for stage I non-small cell lung cancer — mature results for medically inoperable patients. Lung Cancer 51:97–103

    Article  PubMed  Google Scholar 

  62. Ohashi T, Takeda A, Shigematsu N et al (2005) Differences in pulmonary function before vs. 1 year after peripheral lung tumors. Int J Radiat Oncol Biol Phys 62:1003–1008

    PubMed  Google Scholar 

  63. Timmerman R, Papiez L, McGarry R et al (2003) Extracranial stereotactic radioablation: results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest 124:1946–1955

    Article  PubMed  Google Scholar 

  64. Fukumoto S, Shirato H, Shimzu S et al (2002) Small-volume image-guided radiotherapy using hypofractionated, coplanar, and noncoplanar multiple fields for patients with inoperable Stage I nonsmall cell lung carcinomas. Cancer 95:1546–1553

    Article  PubMed  Google Scholar 

  65. Paludan M, Traberg Hansen A, Petersen J et al (2006) Aggravation of dyspnea in stage I non-small cell lung cancer patients following stereotactic body radiotherapy: is there a dose-volume dependency? Acta Oncol 45:818–822

    Article  PubMed  Google Scholar 

  66. Aoki T, Nagata Y, Negoro Y et al (2004) Evaluation of lung injury after three-dimensional conformal stereotactic radiation therapy for solitary lung tumors: CT appearance. Radiology 230:101–108

    Article  PubMed  Google Scholar 

  67. Kimura T, Matsuura K, Murakami Y et al (2006) CT appearance of radiation injury of the lung and clinical symptoms after stereotactic body radiation therapy (SBRT) for lung cancers: are patients with pulmonary emphysema also candidates for SBRT for lung cancers? Int J Radiat Oncol Biol Phys 66:483–491

    PubMed  Google Scholar 

  68. Takeda T, Takeda A, Kunieda E et al (2004) Radiation injury after hypofractionated stereotactic radiotherapy for peripheral small lung tumors: serial changes on CT. AJR Am J Roentgenol 182:1123–1128

    PubMed  Google Scholar 

  69. Takeda A, Kunieda E, Takeda T et al (2008) Possible misinterpretation of demarcated solid patterns of radiation fibrosis on CT Scans as tumor recurrence in patients receiving hypofractionated stereotactic radiotherapy for lung cancer. Int J Radiat Oncol Biol Phys 70:1057–1065

    PubMed  Google Scholar 

  70. Schefter TE, Kavanagh BD, Timmerman RD et al (2005) A phase I trial of stereotactic body radiation therapy (SBRT) for liver metastases. Int J Radiat Oncol Biol Phys 62:1371–1378

    PubMed  Google Scholar 

  71. Kavanagh BD, Schefter TE, Cardenes HR et al (2006) Interim analysis of a prospective phase I/II trial of SBRT for liver metastases. Acta Oncol 45:848–855

    Article  PubMed  Google Scholar 

  72. Hoyer M, Roed H, Traberg Hansen A et al (2006) Phase II study on stereotactic body radiotherapy of colorectal metastases. Acta Oncol 45:823–830

    Article  PubMed  Google Scholar 

  73. Tse RV, Hawkins M, Lockwood G et al (2008) Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol 26:657–664

    Article  PubMed  Google Scholar 

  74. Hoyer M, Roed H, Sengelov L et al (2005) Phase II study on stereotactic radiotherapy of locally advanced pancreatic carcinoma. Radiother Oncol 76:48–53

    Article  PubMed  Google Scholar 

  75. Koong AC, Le QT, Ho A et al (2004) Phase I study of stereotactic radiosurgery in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 58:1017–1021

    PubMed  Google Scholar 

  76. Koong AC, Christofferson E, Le QT et al (2005) Phase II study to assess the efficacy of conventionally fractionated radiotherapy followed by a stereotactic radiosurgery boost in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 63:320–323

    PubMed  Google Scholar 

  77. Cupp JS, Koong AC, Fisher GA et al (2008) Tissue effects after stereotactic body radiotherapy using cyberknife for patients with abdominal malignancies. Clin Oncol (R Coll Radiol) 20:69–75

    CAS  Google Scholar 

  78. Fowler JF, Ritter MA, Chappell RJ et al (2003) What hypofractionated protocols should be tested for prostate cancer? Int J Radiat Oncol Biol Phys 56:1093–1104

    Article  PubMed  Google Scholar 

  79. Pawlicki T, Cotrutz C, King C (2007) Prostate cancer therapy with stereotactic body radiation therapy. Front Radiat Ther Oncol 40:395–406

    Article  PubMed  Google Scholar 

  80. Madsen BL, Hsi RA, Pham HT et al (2007) Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int J Radiat Oncol Biol Phys 67:1099–1105

    PubMed  Google Scholar 

  81. Nieder C, Grosu AL, Andratschke NH et al (2006) Update of human spinal cord reirradiation tolerance based on additional data from 38 patients. Int J Radiat Oncol Biol Phys 66:1446–1449

    PubMed  Google Scholar 

  82. Gerszten PC, Burton SA, Ozhasoglu C et al (2007) Radiosurgery for spinal metastases: clinical experience in 500 cases from a single institution. Spine 32:193–199

    Article  PubMed  Google Scholar 

  83. Gerszten PC, Ozhasoglu C, Burton SA et al (2004) Cyber-Knife frameless stereotactic radiosurgery for spinal lesions: clinical experience in 125 cases. Neurosurgery 55:89–98; discussion 98–89

    PubMed  Google Scholar 

  84. Jin JY, Chen Q, Jin R et al (2007) Technical and clinical experience with spine radiosurgery: a new technology for management of localized spine metastases. Technol Cancer Res Treat 6:127–133

    PubMed  Google Scholar 

  85. Ryu S, Rock J, Rosenblum M et al (2004) Patterns of failure after single-dose radiosurgery for spinal metastasis. J Neurosurg 101[Suppl 3]:402–405

    PubMed  Google Scholar 

  86. De Salles AA, Pedroso AG, Medin P et al (2004) Spinal lesions treated with Novalis shaped beam intensity-modulated radiosurgery and stereotactic radiotherapy. J Neurosurg 101[Suppl 3]:435–440

    PubMed  Google Scholar 

  87. Benzil DL, Saboori M, Mogilner AY et al (2004) Safety and efficacy of stereotactic radiosurgery for tumors of the spine. J Neurosurg 101[Suppl 3]:413–418

    PubMed  Google Scholar 

  88. Hamilton AJ, Lulu BA, Fosmire H et al (1996) LINAC-based spinal stereotactic radiosurgery. Stereotact Funct Neurosurg 66:1–9

    Article  CAS  PubMed  Google Scholar 

  89. Yamada Y, Bilsky MH, Lovelock DM et al (2008) High-dose, single-fraction image-guided intensity-modulated radiotherapy for metastatic spinal lesions. Int J Radiat Oncol Biol Phys 71:484–490

    PubMed  Google Scholar 

  90. Chang EL, Shiu AS, Lii MF et al (2004) Phase I clinical evaluation of near-simultaneous computed tomographic image-guided stereotactic body radiotherapy for spinal metastases. Int J Radiat Oncol Biol Phys 59:1288–1294

    Article  PubMed  Google Scholar 

  91. Chang EL, Shiu AS, Mendel E et al (2007) Phase I/II study of stereotactic body radiotherapy for spinal metastasis and its pattern of failure. J Neurosurg Spine 7:151–160

    Article  PubMed  Google Scholar 

  92. Yamada Y, Lovelock DM, Yenice KM et al (2005) Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors: a preliminary report. Int J Radiat Oncol Biol Phys 62:53–61

    Article  PubMed  Google Scholar 

  93. Yin FF, Ryu S, Ajlouni M et al (2004) Image-guided procedures for intensity-modulated spinal radiosurgery. Technical note. J Neurosurg 101[Suppl 3]:419–424

    PubMed  Google Scholar 

  94. Gagnon GJ, Henderson FC, Gehan EA et al (2007) Cyberknife radiosurgery for breast cancer spine metastases: a matched-pair analysis. Cancer 110:1796–1802

    Article  PubMed  Google Scholar 

  95. Ryu S, Jin JY, Jin R et al (2007) Partial volume tolerance of the spinal cord and complications of single-dose radiosurgery. Cancer 109:628–636

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Milano, M.T., Williams, J.P., Constine, L.S., Okunieff, P. (2008). Late Toxicity from Hypofractionated Stereotactic Body Radiation. In: Rubin, P., Constine, L.S., Marks, L.B., Okunieff, P. (eds) Cured II ■ LENT Cancer Survivorship Research and Education. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76271-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76271-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76270-6

  • Online ISBN: 978-3-540-76271-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics