Skip to main content

Palaeomicrobiology of Tuberculosis

  • Chapter
Paleomicrobiology

The study of tuberculosis palaeomicrobiology has proved to be most rewarding. Due to the characteristic palaeopathological lesions, tuberculosis was recognised in archaeological material and was the fi rst infectious disease to be studied by modern biomolecular methods. The combination of a tough bacterial cell wall and GC-rich DNA has resulted in excellent DNA preservation in some specimens. A wide range of specifi c molecular diagnostic and typing methods, developed by clinical microbiologists, are available. These have been applied successfully to archaeological material, resulting in the genotyping of the infecting organisms. There has been a fruitful interaction with modern genomic studies, and ancient fi ndings support current views on the evolution of the species in the Mycobacterium tuberculosis complex. Questions remain to be answered, including the nature of pre-Columbian tuberculosis in the Americas, and the evolution of tuberculosis in animals. The important topics of interactions with other pathogenic microbes, and the host, are now being explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu Al-Soud W, Rådström P (2000) Effects of amplification facilitators on diagnostic PCR in the presence of blood, feces and meat. J Clin Microbiol 38:4463–4470

    PubMed  CAS  Google Scholar 

  • Armelagos GJ, Harper KN (2005) Genomics at the origins of agriculture, part two. Evol Anthropol 14:109–121

    Article  Google Scholar 

  • Armelagos GJ, Brown PJ, Turner B (2005) Evolutionary, historical and political economic perspectives on health and disease. Soc Sci Med 61:755–765

    Article  PubMed  Google Scholar 

  • Arriaza BT, Salo W, Aufderheide AC, Holcomb TA (1995) Pre-Colombian tuberculosis in Northern Chile: molecular and skeletal evidence. Am J Phys Anthropol 98:37–45

    Article  PubMed  CAS  Google Scholar 

  • Aufderheide A, Rodriguez Martin C (1998) The Cambridge encyclopedia of human paleopathology. Cambridge University Press, Cambridge

    Google Scholar 

  • Baker L, Brown T, Maiden MC, Drobniewski F (2004) Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg Infect Dis 10:1568–1577

    PubMed  CAS  Google Scholar 

  • Barnes P, Cave MD (2003) Molecular epidemiology of tuberculosis. N Engl J Med 349:1149–1156

    Article  PubMed  CAS  Google Scholar 

  • Baron H, Hummel S, Herrmann B (1996) Mycobacterium tuberculosis complex DNA in ancient human bones. J Archaeol Sci 23:667–671

    Article  Google Scholar 

  • Boom R, Sol CJA, Salimans MMM, Jansen CL, Wertheim-van Dillen PME, van der Noordaa J (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503

    PubMed  CAS  Google Scholar 

  • Braun M, Cook DC, Pfeiffer S (1998) DNA from Mycobacterium tuberculosis complex identified in North American, pre-Colombian human skeletal remains. J Archaeol Sci 25:271–277

    Article  Google Scholar 

  • Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S, van Soolingen D, Cole ST (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci USA 99:3684–3689

    Article  PubMed  CAS  Google Scholar 

  • Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, Al-Hajoj SA, Allix C, Aristimuño L, Arora J, Baumanis V, Binder L, Cafrune P, Cataldi A, Cheong S, Diel R, Ellermeier C, Evans JT, Fauville-Dufaux M, Ferdinand S, Garcia de Viedma D, Garzelli C, Gazzola L, Gomes HM, Guttierez MC, Hawkey PM, van Helden PD, Kadival GV, Kreiswirth BN, Kremer K, Kubin M, Kulkarni SP, Liens B, Lillebaek T, Ho ML, Martin C, Martin C, Mokrousov I, Narvskaïa O, Ngeow YF, Naumann L, Niemann S, Parwati I, Rahim Z, Rasolofo-Razanamparany V, Rasolonavalona T, Rossetti ML, Rüsch-Gerdes S, Sajduda A, Samper S, Shemyakin IG, Singh UB, Somoskovi A, Skuce RA, van Soolingen D, Streicher EM, Suffys PN, Tortoli E, Tracevska T, Vincent V, Victor TC, Warren RM, Yap SF, Zaman K, Portaels F, Rastogi N, Sola C (2006) Mycobacterium tuberculosiscomplex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiology 6:23 http://www.biomedcentral.com/1471-2180-6-23

    Google Scholar 

  • Butler WR, Guthertz LS (2001) Mycolic acid analysis by high-performance liquid chromatography for identification of Mycobacterium species. Clin Microbiol Rev 14:704–726

    Article  PubMed  CAS  Google Scholar 

  • Canci A, Minozzi S, Borgognini Tarli SM (1996) New evidence of tuberculous spondylitis from Neolithic Liguria (Italy). Int J Osteoarchaeol 6:497–501

    Article  Google Scholar 

  • Cano RJ, Tiefenbrunner F, Ubaldi M, Del Cueto C, Luciani S, Cox T, Orkand P, Künzel KH, Rollo F (2000) Sequence analysis of bacterial DNA in the colon and stomach of the Tyrolean Iceman. Am J Phys Anthropol 112:297–309

    Article  PubMed  CAS  Google Scholar 

  • Clark GA, Kelley MA, Hill MC (1987) The evolution of mycobacterial disease in human populations Curr Anthropol 28:45–62

    Article  PubMed  CAS  Google Scholar 

  • Collins DM, Stephens DM (1991) Identification of an insertion sequence, IS1081, in Mycobacterium bovis. FEMS Microbiol Lett 67:11–15

    Article  PubMed  CAS  Google Scholar 

  • Crubézy E, Ludes B, Poveda JD, Clayton J, Crouau-Roy B, Montagnon D (1998) Identification of Mycobacterium DNA in an Egyptian Pott’s disease of 5, 400 years old. C R Acad Sci III-Vie 321:941–951

    Google Scholar 

  • Daniel TM (2000) The origins and precolonial epidemiology of tuberculosis in the Americas: can we figure them out? Int J Tuberc Lung Dis 4:395–400

    PubMed  CAS  Google Scholar 

  • Donoghue HD, Spigelman M (2006) Pathogenic microbial ancient DNA: a problem or an opportunity? Proc R Soc B 273:641–642

    Article  PubMed  CAS  Google Scholar 

  • Donoghue HD, Spigelman J, Zias J, Gernaey-Child AM, Minnikin DE (1998) Mycobacterium tuberculosis complex DNA in calcified pleura from remains 1400 years old. Lett Appl Microbiol 27:265–269

    Article  PubMed  CAS  Google Scholar 

  • Donoghue HD, Spigelman M, Greenblatt CL, Lev-Maor G, Kahila Bar-Gal G, Matheson C, Vernon K, Nerlich AG, Zink AR (2004) Tuberculosis: from prehistory to Robert Koch, as revealed by ancient DNA. Lancet Infect Dis 4:584–592

    Article  PubMed  CAS  Google Scholar 

  • Donoghue HD, Marcsik A, Matheson C, Vernon K, Nuorala E, Molto JE, Greenblatt CL, Spigelman M (2005) Co–infection of Mycobacterium tuberculosis and Mycobacterium leprae in human archaeological samples: a possible explanation for the historical decline of leprosy. Proc R Soc B 272:389–394

    Article  PubMed  Google Scholar 

  • Donoghue HD, Spigelman M, Grant P, Klein A, Shouval D, et al (2007) Microbiological investigation of a Korean medieval child mummy found in Yangju. In: Proceedings of the 6th World Congress on Mummy Studies, Teguise, Lanzerote, Canary Islands, Spain, 20–24 February 2007

    Google Scholar 

  • Drancourt M, Raoult D (2005) Palaeomicrobiology: current issues and perspectives. Nat Rev Microbiol 3:23–35

    Article  PubMed  CAS  Google Scholar 

  • Drobniewski FA, Caws M, Gibson A, Young D (2003) Modern laboratory diagnosis of tuberculosis. Lancet Infect Dis 3:141–147

    Article  PubMed  CAS  Google Scholar 

  • Dziadek J, Sajduda A, Borun M (2001) Specificity of insertion sequence-based PCR assays for Mycobacterium tuberculosis complex. Int J Tuberc Lung Dis 5:569–574

    PubMed  CAS  Google Scholar 

  • Eisenach KD, Cave MD, Bates JH, Crawford JT (1990) Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis. J Infect Dis 161:977–981

    PubMed  CAS  Google Scholar 

  • Elston DM (2006) The hygiene hypothesis and atopy: bring back the parasites? J Am Acad Dermatol 54:172–179

    Article  PubMed  Google Scholar 

  • Faerman M, Jankauskas R, Gorski A, Bercovier H, Greenblatt CL (1997) Prevalence of human tuberculosis in a Medieval population of Lithuania studied by ancient DNA analysis. Ancient Biomol 1:205–214

    CAS  Google Scholar 

  • Fernando SL, Britton WJ (2006) Genetic susceptibility to mycobacterial disease in humans. Immunol Cell Biol 84:125–137

    Article  PubMed  CAS  Google Scholar 

  • Fletcher HA, Donoghue HD, Holton J, Pap I, Spigelman M (2003a) Widespread occurrence of Mycobacterium tuberculosis DNA from 18th–19th Century Hungarians. Am J Phys Anthropol 120:144–152

    Article  PubMed  Google Scholar 

  • Fletcher HA, Donoghue HD, Taylor GM, van der Zanden AGM, Spigelman M (2003b) Molecular analysis of Mycobacterium tuberculosis from a family of 18th century Hungarians. Microbiology 149:143–151

    Article  PubMed  CAS  Google Scholar 

  • Forbes BA, Hicks KE (1996) Substances interfering with direct detection of Mycobacterium tuberculosis in clinical specimens by PCR: effects of bovine serum albumin. J Clin Microbiol 34:2125–2128

    PubMed  CAS  Google Scholar 

  • Formicola V, Milanesi Q, Scarsini C (1987) Evidence of spinal tuberculosis at the beginning of the fourth millennium BC from Arene Candide cave (Liguria, Italy). Am J Phys Anthropol 72:1–6

    Article  PubMed  CAS  Google Scholar 

  • Fusegawa H, Wang BH, Sakurai K, Nagasawa K, Okauchi M, Nagakura K (2003) Outbreak of tuberculosis in a 2000-year-old Chinese population. Kansenshogaku Zasshi 77:146–149

    PubMed  Google Scholar 

  • Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S, Nicol M, Niemann S, Kremer K, Gutierrez MC, Hilty M, Hopewell PC, Small PM (2006) Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103:2869–2873

    Article  PubMed  CAS  Google Scholar 

  • Garay SM (1996) Pulmonary tuberculosis In: Rom WN, Garay SM (eds) Tuberculosis. Little Brown, Boston, pp 373–412

    Google Scholar 

  • Gernaey AM, Minnikin DE, Copley MS, Power JJ, Ahmed AMS, Dixon RA, Roberts CA, Robertson DJ, Nolan J, Chamberlain A (1998) Detecting ancient tuberculosis. Internet Archaeol 5: http://intarch.ac.uk/journal/issue5/gernaey_index.html

  • Gernaey AM, Minnikin DE, Copley MS, Dixon RA, Middleton JC, Roberts CA (2001) Mycolic acids and ancient DNA confirm an osteological diagnosis of tuberculosis. Tuberculosis (Edinb) 81:259–265

    Article  CAS  Google Scholar 

  • Gömez I Prat J, Mendonça de Souza SMF (2003) Prehistoric tuberculosis in America: adding comments to a literature review. Mem Inst Oswaldo Cruz 98(Suppl 1):151–159

    Google Scholar 

  • Gordon SV, Heym B, Parkhill J, Barrell B, Cole ST (1999) New insertion sequences and a novel repeated sequence in the genome of Mycobacterium tuberculosis H37Rv. Microbiology 145:881–892

    Article  PubMed  CAS  Google Scholar 

  • Götherström A, Collins MJ, Angerbjörn A, Lidén K (2002) Bone preservation and DNA amplification. Archaeometry 44:395–404

    Article  Google Scholar 

  • Grange JM (1995) Human aspects of Mycobacterium bovis infection. In: Thoen CO, Steele JH (eds) Mycobacterium bovis infection on animals and humans. Iowa State University Press, Ames, Iowa, pp 29–46

    Google Scholar 

  • Gutierrez MC, Brisse S, Brosch R, Fabre M, Omaïs B, Marmiesse M, Supply P, Vincent V (2005) Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1:55–61

    Article  CAS  Google Scholar 

  • Haas CJ, Zink A, Molnár E, Szeimies U, Reischl U, Marcsik A, Ardagna Y, Dutour O, Pálfi G, Nerlich AG (2000) Molecular evidence for different stages of tuberculosis in ancient bone samples from Hungary. Am J Phys Anthropol 113:293–304

    Article  PubMed  CAS  Google Scholar 

  • Haas F, Haas SS (1996) The origins of Mycobacterium tuberculosis and the notion of its contagiousness In: Rom WN, Garay SM (eds) Tuberculosis. Little Brown, Boston, pp 3–19

    Google Scholar 

  • Hänni C, Brousseau T, Laudet V, Stehelin D (1995) Isopropanol precipitation removes PCR inhibitors from ancient bone extracts. Nucleic Acids Res 23:881–882

    Article  PubMed  Google Scholar 

  • Hardie RM, Watson JM (1992) Mycobacterium bovis in England and Wales: past, present and future. Epidemiol Infect 109:23–33

    PubMed  CAS  Google Scholar 

  • Hirsh AE, Tsolaki AG, DeRiemer K, Feldman MW, Small PM (2004) Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc Natl Acad Sci USA 101:4871–4876

    Article  PubMed  CAS  Google Scholar 

  • Hofreiter M, Serre D, Poinar HN, Kuch M, Pääbo S (2001) Ancient DNA. Nat Rev Genet 2:353–359

    Article  PubMed  CAS  Google Scholar 

  • Höss M, Pääbo S (1993) DNA extraction from Pleistocene bones by a silica-based purification method. Nucleic Acids Res 21:3913–3914

    Article  PubMed  Google Scholar 

  • Huard RC, Fabre M, de Haas P, Lazzarini LC, van Soolingen D, Cousins D, Ho JL (2006) Novel genetic polymorphisms that further delineate the phylogeny of the Mycobacterium tuberculosis complex. J Bacteriol 188:4271–4287

    Article  PubMed  CAS  Google Scholar 

  • Huggett JF, McHugh TD, Zumla A (2003) Tuberculosis: amplification-based clinical diagnostic techniques. Int J Biochem Cell Biol 35:1407–1412

    Article  PubMed  CAS  Google Scholar 

  • Hutás I (1999) The history of tuberculosis in Hungary. In: Pálfi G, Dutour O, Deák J, Hutás I (eds) Tuberculosis past and present. Golden Books/Tuberculosis Foundation, Budapest, pp 39–42

    Google Scholar 

  • Kamerbeek J, Schouls L, Kolk A., van Agterveld M, van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, van Embden J (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35:907–914

    PubMed  CAS  Google Scholar 

  • Kemp BM, Monroe C, Smith DG (2006) Repeat silica extraction: a simple technique for the removal of PCR inhibitors from DNA extracts. J Archaeol Sci 33:1680–1689

    Article  Google Scholar 

  • Kim SB, Shin JE, Park SS, Bok GD, Chang YP, Kim J, Chung YH, Yi YS, Shin MH, Chang BS, Shin DH, Kim MJ (2006) Endoscopic investigation of the internal organs of a 15th-century child mummy from Yangju, Korea. J Anatomy 209:681–688

    Article  Google Scholar 

  • Konomi N, Lebwohl E, Mowbray K, Tattersall I, Zhang D (2002) Detection of mycobacterial DNA in Andean mummies. J Clin Microbiol 40:4738–4740

    Article  PubMed  CAS  Google Scholar 

  • Lambert PA (2002) Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J Appl Microbiol 92(Suppl):46S–54S

    Article  PubMed  Google Scholar 

  • Mackowiak PA, Tiesler Bios V, Aguilar M, Buikstra JE (2005) On the origin of American tuberculosis. Clin Infect Dis 41:515–518

    Article  PubMed  Google Scholar 

  • Malik ANJ, Godfrey-Fausset P (2005) Effects of genetic variability of Mycobacterium tuberculosis strains on the presentation of disease. Lancet Infect Dis 5:174–183

    PubMed  Google Scholar 

  • Manchester K (1984) Tuberculosis and leprosy in antiquity: an interpretation. Med History 28:162–173

    CAS  Google Scholar 

  • Mark L, Patonai Z, Molnar E, Marcsik A (2006) High-throughput mass spectroscopic determination of ancient pathological biomarkers. In: Proceedings of the 16th Paleopathology Association European Meeting, 28 August–1 September 2006, Santorini Island, Greece

    Google Scholar 

  • Mathema B, Kurepina NE, Bifani PJ, Kreiswirth BN (2006) Molecular epidemiology of tuberculosis: current insights. Clin Microbiol Rev 19:658–685

    Article  PubMed  CAS  Google Scholar 

  • Mays S, Taylor GM, Legge AJ, Young DB, Turner-Walker G (2001) Paleopathological and biomolecular study of tuberculosis in a medieval skeletal collection from England. Am J Phys Anthropol 114:298–311

    Article  PubMed  CAS  Google Scholar 

  • Mays S, Fysh E, Taylor GM (2002) Investigation of the link between visceral surface rib lesions and tuberculosis in a Medieval skeletal series from England using ancient DNA. Am J Phys Anthropol 119:27–36

    Article  PubMed  CAS  Google Scholar 

  • Minnikin DE, Kremer L, Dover LG, Besra GS (2002) The methyl-branched fortifications of Mycobacterium tuberculosis. Chem Biol 9:545–553

    Article  PubMed  CAS  Google Scholar 

  • Mokrousov I, Ly HM, Otten T, Lan NN, Vyshnevskyi B, Hoffner S, Narvskaya O (2005) Origin and primary dispersal of the Mycobacterium tuberculosis Beijing genotype: clues from human phylogeography. Genome Res 15:1357–1364

    Article  PubMed  CAS  Google Scholar 

  • Nerlich AG, Haas CJ, Zink A, Szeimes U, Hagedorn HG (1997) Molecular evidence for tuberculosis in an ancient Egyptian mummy. Lancet 350:1404

    Article  PubMed  CAS  Google Scholar 

  • Nuorala E, Götherström A, Ahlström T, Donoghue HD, Spigelman M, Lidén, K (2004) MTB complex DNA in a Scandinavian Neolithic passage grave. Paper I, Molecular Palaeopathology. Ancient DNA analyses of the bacterial diseases tuberculosis and leprosy. In: Theses and Papers in Scientific Archaeology 6. Archaeological Research Laboratory, Stockholm University, Stockholm

    Google Scholar 

  • O’Reilly LM, Daborn CJ (1995) The epidemiology of Mycobacterium bovis infections in animals and man: a review. Tuber Lung Dis 76 Suppl 1:1–46

    Article  PubMed  Google Scholar 

  • O’Rourke DH, Hayes MG, Carlyle SW (2000) Ancient DNA studies in physical anthropology. Annu Rev Anthropol 29:217–242

    Article  Google Scholar 

  • Ortner DJ, Putschar WG (1981) Identification of pathological conditions on human skeletal remains. Smithsonian Institution Press, Washington DC

    Google Scholar 

  • Pääbo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679

    Article  PubMed  CAS  Google Scholar 

  • Pap I, Józsa L, Repa I, Bajzik G, Lakhani SR, Donoghue HD, Spigelman M (1999) 18–19th century tuberculosis in naturally mummified individuals (Vác, Hungary). In: Pálfi G, Dutour O, Deák J, Hutás I (eds) Tuberculosis past and present. Golden Books/Tuberculosis Foundation, Budapest, pp 421–428

    Google Scholar 

  • Parsons LM, Brosch R, Cole ST, Somoskövi Á, Loder A, Bretzel G, Van Soolingen D, Hale YM, Salfinger M (2002) Rapid and simple approach for identification of Mycobacterium tuberculosis complex isolates by PCR-based genomic deletion analysis. J Clin Microbiol 40:2339–2345

    Article  PubMed  CAS  Google Scholar 

  • Poinar HN, Stankiewicz BA (1999) Protein preservation and DNA retrieval from ancient tissues. Proc Natl Acad Sci USA 96:8426–8431

    Article  PubMed  CAS  Google Scholar 

  • Poinar HN, Hofreiter M, Spaulding WG, Martin PS, Stankiewicz BA, Bland H, Evershed RP, Possnert G, Pääbo S (1998) Molecular coproscopy: dung and diet of the extinct Ground Sloth Nothrotheriops shastensis. Science 281:402–406

    Article  PubMed  CAS  Google Scholar 

  • Raff J, Cook DC, Kaestle F (2006) Tuberculosis in the New World: a study of ribs from the Schild Mississippian population, West-Central Illinois. Mem Inst Owaldo Cruz 101[Suppl II]:25–27

    Google Scholar 

  • Ratledge C (2004) Iron, mycobacteria and tuberculosis. Tuberculosis (Edinb) 84:110–130

    Article  Google Scholar 

  • Resnick D, Niwayama G (1995) Osteomyelitis, septic arthritis and soft tissue infection: organisms. In: Resnick D (ed) Diagnosis of bone and joint disorders. Saunders, Edinburgh, pp 2448–2558

    Google Scholar 

  • Roberts CA, Buikstra JE (2003a) The development of tuberculosis from earliest times to the development of drugs. In: Davies PDO (ed) Clinical tuberculosis, 3rd edn. Arnold, London, pp 3–20

    Google Scholar 

  • Roberts CA, Buikstra JE (2003b) The bioarchaeology of tuberculosis: a global view on a reemerging disease. University Press of Florida, Gainesville, FL

    Google Scholar 

  • Rothschild BM, Martin LD (2003) Frequency of pathology in a large natural sample from Natural Trap Cave with special remarks on erosive disease in the Pleistocene. Reumatismo 55:58–65

    PubMed  CAS  Google Scholar 

  • Rothschild BM, Martin LD (2006) Did ice-age bovids spread tuberculosis? Naturwissenschaften 93:565–569

    Article  PubMed  CAS  Google Scholar 

  • Rothschild BM, Martin LD, Lev G, Bercovier H, Bar-Gal GK, Greenblatt C, Donoghue H, Spigelman M, Brittain D (2001) Mycobacterium tuberculosis complex DNA from an extinct bison dated 17, 000 years before the present. Clin Infect Dis 33:305–311

    Article  PubMed  CAS  Google Scholar 

  • Salo WL, Aufderheide AC, Buikstra J, Holcomb TA (1994) Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc Natl Acad Sci USA 91:2091–2094

    Article  PubMed  CAS  Google Scholar 

  • Santos AL, Roberts CA (2006) Anatomy of a serial killer: differential diagnosis of tuberculosis based on rib lesions of adult individuals from the Coimbra Identified Skeletal Collection, Portugal. Am J Phys Anthropol 130:38–49

    Article  PubMed  Google Scholar 

  • Spigelman M, Donoghue HD (2003) Paleobacteriology with special reference to pathogenic mycobacteria. In: Greenblatt CL, Spigelman M (eds) Emerging pathogens: archaeology, ecology and evolution of infectious disease. Oxford University Press, Oxford, pp 175–188

    Google Scholar 

  • Spigelman M, Greenblatt CL (1998) A guide to digging for pathogens. In: Greenblatt CL (ed) Digging for pathogens: ancient emerging diseases – their evolutionary, anthropological, and archaeological context. Balaban, Rehovot, Israel, pp 345–361

    Google Scholar 

  • Spigelman M, Lemma E (1993) The use of the polymerase chain reaction (PCR) to detect Mycobacterium tuberculosis in ancient skeletons. Int J Osteoarchaeol 3:137–413

    Article  Google Scholar 

  • Spigelman M, Matheson C, Lev G, Greenblatt C, Donoghue HD (2002) Confirmation of the presence of Mycobacterium tuberculosis complex-specific DNA in three archaeological specimens. Int J Osteoarchaeol 12:393–400

    Article  Google Scholar 

  • Spigelman M, Greenblatt CL, Vernon K, Zylber MI, Sheridan SG, Van Gerven DP, Shaheem Z, Donoghue HD (2005) Preliminary findings on the paleomicrobiological study of 400 naturally mummified human remains from upper Nubia. J Biol Res 80:91–95

    Google Scholar 

  • Spigelman M, Pap I, Donoghue HD (2006) A death from Langerhans cell histiocytosis and tuberculosis in 18th century Hungary–what palaeopathology can tell us today. Leukemia 20:740–742

    Article  PubMed  CAS  Google Scholar 

  • Sreevatsan S, Escalante P, Pan X, Gillies DA 2nd, Siddiqui S, Khalaf CN, Kreiswirth BN, Bifani P, Adams LG, Ficht T, Perumaalla VS, Cave MD, van Embden JD, Musser JM (1996) Identification of a polymorphic nucleotide in oxyR specific for Mycobacterium bovis. J Clin Microbiol 34:2007–2010

    PubMed  CAS  Google Scholar 

  • Sreevatsan S, Pan X, Stockbauer KE, Connell ND, Kreiswirth BN, Whittam TS, Musser JM (1997) Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci USA 94:9869–9874

    Article  PubMed  CAS  Google Scholar 

  • Steinbock RT (1976) Paleopathological diagnosis and interpretation: bone disease in ancient human populations. Thomas, Springfield, IL

    Google Scholar 

  • Sterling TR, Pope DS, Bishai WR, Harrington S, Gershon RR, Chaisson RE (2000) Transmission of Mycobacterium tuberculosis from a cadaver to an embalmer. New Engl J Med 342:246–248

    Article  PubMed  CAS  Google Scholar 

  • Sutlovic D, Gojanovic MD, Andelinovic S, Gugic, Primorac D (2005) Taq polymerase reverses inhibition of quantitative real time polymerase chain reaction by humic acid. Croat Med J 46:556–562

    PubMed  Google Scholar 

  • Tayles N, Buckley HR (2004) Leprosy and tuberculosis in Iron Age southeast Asia? Am J Phys Anthropol 125:239–256

    Article  PubMed  CAS  Google Scholar 

  • Taylor GM, Crossey M, Saldanha J, Waldron T (1996) DNA from Mycobacterium tuberculosis identified in Mediaeval human skeletal remains using polymerase chain reaction. J Archaeol Sci 23:789–798

    Article  Google Scholar 

  • Taylor GM, Goyal M, Legge AJ, Shaw RJ, Young D (1999) Genotypic analysis of Mycobacterium tuberculosis from mediaeval human remains. Microbiology 145:899–904

    Article  PubMed  CAS  Google Scholar 

  • Taylor GM, Mays S, Legge AJ, Ho TBL, Young DB (2001) Genetic analysis of tuberculosis in human remains. Ancient Biomol 3:267–280

    CAS  Google Scholar 

  • Taylor GM, Stewart GR, Cooke M, Chaplin S, Ladva S, Kirkup J, Palmer S, Young DB (2003) Koch’s Bacillus – a look at the first isolate of Mycobacterium tuberculosis from a modern perspective. Microbiology 149:3213–3220

    Article  PubMed  CAS  Google Scholar 

  • Taylor GM, Young DB, Mays SA (2005) Genotypic analysis of the earliest known prehistoric case of tuberculosis in Britain. J Clin Microbiol 43:2236–2240

    Article  PubMed  CAS  Google Scholar 

  • Taylor GM, Murphy E, Hopkins R, Rutland P, Chitov Y (2007) First report of Mycobacterium bovis DNA in human remains from the Iron Age. Microbiology 153:1243–1249

    Article  PubMed  CAS  Google Scholar 

  • Van Gerven DP, Sandford MK, Hummert JR (1981) Mortality and culture change in Nubia’s Batn el Hajar. J Hum Evol 10:395–408

    Article  Google Scholar 

  • Van Soolingen D (2001) Molecular epidemiology of tuberculosis and other mycobacterial infections: main methodologies and achievements. J Intern Med 249:1–26

    Article  PubMed  CAS  Google Scholar 

  • Weed LA, Baggenstoss AH (1951) The isolation of pathogens from tissues of embalmed human bodies. Am J Clin Pathol 21:1114–1120

    PubMed  CAS  Google Scholar 

  • Weiss RA, McMichael AJ (2004) Social and environmental risk factors in the emergence of infectious diseases. Nature Med 10[Suppl]: 570–576

    Article  CAS  Google Scholar 

  • Wilbur AK, Buikstra JE (2006) Patterns of tuberculosis in the Americas–How can modern biomedicine inform the ancient past? Mem Inst Oswaldo Cruz 101[Suppl II]:59–66

    PubMed  Google Scholar 

  • World Health Organisation (2006) http://www.who.int/mediacentre/factsheets/fs104/en/index.html

  • Zink A, Haas CJ, Reischl U, Szeimies U, Nerlich AG (2001) Molecular analysis of skeletal tuberculosis in an ancient Egyptian population. J Med Microbiol 50:355–366

    PubMed  CAS  Google Scholar 

  • Zink AR, Reischl U, Wolf H, Nerlich AG (2002) Molecular analysis of ancient microbial infections. FEMS Microbiol Lett 213:141–147

    Article  PubMed  CAS  Google Scholar 

  • Zink AR, Grabner W, Reischl U, Nerlich AG (2003a) Molecular study on human tuberculosis in three geographically distinct and time delineated populations from ancient Egypt. Epidemiol Infect 130:239–249

    Article  PubMed  CAS  Google Scholar 

  • Zink AR, Sola C, Reischl U, Grabner W, Rastogi N, Wolf H, Nerlich AG (2003b) Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. J Clin Microbiol 41:359–367

    Article  PubMed  CAS  Google Scholar 

  • Zink AR, Grabner W, Nerlich AG (2005a) Molecular identification of human tuberculosis in recent and historic bone tissue samples: the role of molecular techniques for the study of historic tuberculosis. Am J Phys Anthropol 126:32–47

    Article  PubMed  Google Scholar 

  • Zink AR, Köhler S, Motamedi N, Reischl U, Wolf H, Nerlich AG (2005b) Preservation and identification of ancient M. tuberculosis complex DNA in Egyptian mummies. J Biol Res 80: 84–87

    Google Scholar 

  • Zink A, Spigelman M, Schraut B, Greenblatt C, Nerlich A, Donoghue H (2006) Leishmaniasis in ancient Egypt and Upper Nubia. Emerg Infect Dis 12:1616–1617

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Donoghue, H.D. (2008). Palaeomicrobiology of Tuberculosis. In: Raoult, D., Drancourt, M. (eds) Paleomicrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75855-6_6

Download citation

Publish with us

Policies and ethics