Skip to main content

Vascular Endothelial Responses to Disturbed Flow: Pathologic Implications for Atherosclerosis

  • Chapter
Bioengineering in Cell and Tissue Research

Abstract

Atherosclerosis is prone to develop at branches and bends of the arterial tree, where laminar blood flow is disturbed by recirculation, with a non-uniform and irregular distribution of wall shear stress. Vascular endothelial cells (ECs) form an interface between the flowing blood and the vessel wall, and are exposed to blood flow-induced shear stress. Recent evidence suggests that laminar blood flow and sustained high shear stress modulate the expression of EC genes and proteins that function to protect against atherosclerosis, whereas disturbed flow and the associated oscillatory and low shear stress up-regulate pro-atherosclerotic genes and proteins that promote development of atherosclerosis. Understanding of the effects of disturbed flow on ECs not only provides mechanistic insights into the role of complex flow patterns in the pathogenesis of atherosclerosis, but also helps to define the differences between quiescent (non-atherogenic) and activated (atherogenic) ECs, which may lead to the discovery and identification of new therapeutic strategies. In this chapter, we summarize the current experimental and theoretical knowledge on the effects of disturbed flow on ECs, in terms of their signal transduction, gene expression, structure, and function. Our purpose is to provide the basic information on the effects of disturbed flow on ECs that is necessary to understand the etiology of lesion development in the disturbed flow-regions of the arterial tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akimoto S, Mitsumata M, Sasaguri T, Yoshida Y (2000) Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21(Sdi1/Cip1/Waf1). Circ Res 86:185–190

    Google Scholar 

  2. Albelda SM, Sampson PM, Haselton FR, McNiff JM, Mueller SN, Williams SK, Fishman AP, Levine EM (1988) Permeability characteristics of cultured endothelial cell monolayers. J Appl Physiol 64:308–322

    Google Scholar 

  3. Asakura T, Karino T (1990) Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res 66:1045–1066

    Google Scholar 

  4. Barber KM, Pinero A, Truskey GA (1998) Effects of recirculating flow on U-937 cell adhesion to human umbilical vein endothelial cells. Am J Physiol 275:H591–H599

    Google Scholar 

  5. Bassiouny HS, Zarins CK, Kadowaki MH, Glagov S (1994) Hemodynamic stress and experimental aortoiliac atherosclerosis. J Vasc Surg 19:426–434

    Google Scholar 

  6. Beere PA, Glagov S, Zarins CK (1992) Experimental atherosclerosis at the carotid bifurcation of the cynomolgus monkey. Localization, compensatory enlargement, and the sparing effect of lowered heart rate. Arterioscler Thromb 12:1245–1253

    Google Scholar 

  7. Bell FP, Adamson IL, Schwartz CJ (1974) Aortic endothelial permeability to albumin: focal and regional patterns of uptake and transmural distribution of 131I-albumin in the young pig. Exp Mol Pathol 20:57–68

    Google Scholar 

  8. Berk BC, Abe JI, Min W, Surapisitchat J, Yan C (2001) Endothelial atheroprotective and anti-inflammatory mechanisms. Ann N Y Acad Sci 947:93–109; discussion 109–11

    Google Scholar 

  9. Bharadvaj BK, Mabon RF, Giddens DP (1982) Steady flow in a model of the human carotid bifurcation. Part I-flow visualization. J Biomech 15:349–362

    Google Scholar 

  10. Bjorkbacka H, Kunjathoor VV, Moore KJ, Koehn S, Ordija CM, Lee MA, Means T, Halmen K, Luster AD, Golenbock DT, Freeman MW (2004) Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med 10:416–421

    Google Scholar 

  11. Bonetti PO, Lerman LO, Lerman A (2003) Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 23:168–175

    Google Scholar 

  12. Brooks AR, Lelkes PI, Rubanyi GM (2002) Gene expression profiling of human aortic endothelial cells exposed to disturbed flow and steady laminar flow. Physiol Genomics 9:27–41

    Google Scholar 

  13. Bruzzone R, Haefliger JA, Gimlich RL, Paul DL (1993) Connexin40, a component of gap junctions in vascular endothelium, is restricted in its ability to interact with other connexins. Mol Biol Cell 4:7–20

    Google Scholar 

  14. Caro CG, Fitz-Gerald JM, Schroter RC (1971) Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B Biol Sci 177:109–159

    Google Scholar 

  15. Casnocha SA, Eskin SG, Hall ER, McIntire LV (1989) Permeability of human endothelial monolayers: effect of vasoactive agonists and cAMP. J Appl Physiol 67:1997–2005

    Google Scholar 

  16. Chang E, Harley CB (1995) Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci USA 92:11190–11194

    Google Scholar 

  17. Chen BP, Li YS, Zhao Y, Chen KD, Li S, Lao J, Yuan S, Shyy JY, Chien S (2001) DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol Genomics 7:55–63

    Google Scholar 

  18. Chen CN, Chang SF, Lee PL, Chang K, Chen LJ, Usami S, Chien S, Chiu JJ (2006) Neutrophils, lymphocytes, and monocytes exhibit diverse behaviors in transendothelial and subendothelial migrations under coculture with smooth muscle cells in disturbed flow. Blood 107:1933–1942

    Google Scholar 

  19. Chen YL, Jan KM, Lin HS, Chien S (1995) Ultrastructural studies on macromolecular permeability in relation to endothelial cell turnover. Atherosclerosis 118:89–104

    Google Scholar 

  20. Cheng C, van Haperen R, de Waard M, van Damme LC, Tempel D, Hanemaaijer L, van Cappellen GW, Bos J, Slager CJ, Duncker DJ, van der Steen AF, de Crom R, Krams R (2005) Shear stress affects the intracellular distribution of eNOS: direct demonstration by a novel in vivo technique. Blood 106:3691–3698

    Google Scholar 

  21. Chien S (2003) Molecular and mechanical bases of focal lipid accumulation in arterial wall. Prog Biophys Mol Biol 83:131–151

    Google Scholar 

  22. Chien S, Li S, Shiu YT, Li YS (2005) Molecular basis of mechanical modulation of endothelial cell migration. Front Siosci 10:1985–2000

    Google Scholar 

  23. Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292, H1209–H1224

    Google Scholar 

  24. Chien S, Li S, Shyy YJ (1998) Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 31, 162–169

    Google Scholar 

  25. Chiu JJ, Chen CN, Lee PL, Yang CT, Chuang HS, Chien S, Usami S (2003) Analysis of the effect of disturbed flow on monocytic adhesion to endothelial cells. J Biomech 36:1883–1895

    Google Scholar 

  26. Chiu JJ, Wang DL, Chien S, Skalak R, Usami S (1998) Effects of disturbed flow on endothelial cells. J Biomech Eng 120:2–8

    Google Scholar 

  27. Chuang PT, Cheng HJ, Lin SJ, Jan KM, Lee MM, Chien S (1990) Macromolecular transport across arterial and venous endothelium in rats. Studies with Evans blue-albumin and horseradish peroxidase. Arteriosclerosis 10:188–197

    Google Scholar 

  28. Cooke JP (2003) Flow NO, and atherogenesis. Proc Natl Acad Sci USA 100:768–770

    Google Scholar 

  29. Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani MG, Martin-Padura I, Stoppacciaro A, Ruco L, McDonald DM, Ward PA, Dejana E (1999) Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci USA 96:9815–9820

    Google Scholar 

  30. Cornhill JF, Roach MR (1976) A quantitative study of the localization of atherosclerotic lesions in the rabbit aorta. Atherosclerosis 23:489–501

    Google Scholar 

  31. Curran T, Franza BR Jr (1988) Fos and Jun: the AP-1 connection. Cell 55:395–397

    Google Scholar 

  32. Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, Garcia-Cardena G, Gimbrone MA Jr (2004) Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci USA 101:14871–14876

    Google Scholar 

  33. Davies PF (1993) Endothelium as a signal transduction interface for flow forces: cell surface dynamics. Thromb Haemost 70:124–128

    Google Scholar 

  34. Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75:519–560

    Google Scholar 

  35. Davies PF (2000) Spatial hemodynamics, the endothelium, and focal atherogenesis: a cell cycle link? Circ Res 86:114–116

    Google Scholar 

  36. Davies PF, Barbee KA, Volin MV, Robotewskyj A, Chen J, Joseph L, Griem ML, Wernick MN, Jacobs E, Polacek DC, dePaola N, Barakat AI (1997) Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction. Annu Rev Physiol 59:527–549

    Google Scholar 

  37. Davies PF, Remuzzi A, Gordon EJ, Dewey CF Jr, Gimbrone MA Jr (1986) Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci USA 83:2114–2117

    Google Scholar 

  38. Davies PF, Robotewskyj A, Griem ML (1994) Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces. J Clin Invest 93:2031–2038

    Google Scholar 

  39. Davies PF, Robotewskyj A, Griem ML, Dull RO, Polacek DC (1992) Hemodynamic forces and vascular cell communication in arteries. Arch Pathol Lab Med 116:1301–1306

    Google Scholar 

  40. Davies PF, Shi C, Depaola N, Helmke BP, Polacek DC (2001) Hemodynamics and the focal origin of atherosclerosis: a spatial approach to endothelial structure, gene expression, and function. Ann N Y Acad Sci 947:7–16; discussion 16–17

    Article  Google Scholar 

  41. Davies PF, Spaan JA, Krams R (2005) Shear stress biology of the endothelium. Ann Biomed Eng 33:1714–1718

    Google Scholar 

  42. de Nigris F, Lerman LO, Ignarro SW, Sica G, Lerman A, Palinski W, Ignarro LJ, Napoli C (2003) Beneficial effects of antioxidants and L-arginine on oxidation-sensitive gene expression and endothelial NO synthase activity at sites of disturbed shear stress. Proc Natl Acad Sci USA 100:1420–1425

    Google Scholar 

  43. Dejana E (1996) Endothelial adherens junctions: implications in the control of vascular permeability and angiogenesis. J Clin Invest 98:1949–1953

    Google Scholar 

  44. Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, VanBavel E, Pannekoek H, Horrevoets AJ (2002) Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood 100:1689–1698

    Google Scholar 

  45. DePaola N, Davies PF, Pritchard WF Jr, Florez L, Harbeck N, Polacek DC (1999) Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc Natl Acad Sci USA 96:3154–3159

    Google Scholar 

  46. DePaola N, Gimbrone MA Jr, Davies PF, Dewey CF Jr (1992) Vascular endothelium responds to fluid shear stress gradients. Arterioscler Thromb 12:1254–1257

    Google Scholar 

  47. Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–185

    Google Scholar 

  48. Dunzendorfer S, Lee HK, Tobias PS (2004) Flow-dependent regulation of endothelial Toll-like receptor 2 expression through inhibition of SP1 activity. Circ Res 95:684–691

    Google Scholar 

  49. Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R, Zettel M, Coleman P (1992) Analysis of gene expression in single live neurons. Proc Natl Acad Sci USA 89:3010–3014

    Google Scholar 

  50. Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ (2002) Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105:1158–1161

    Google Scholar 

  51. Eskin SG, Ives CL, McIntire LV, Navarro LT (1984) Response of cultured endothelial cells to steady flow. Microvasc Res 28:87–94

    Google Scholar 

  52. Franke RP, Grafe M, Schnittler H, Seiffge D, Mittermayer C, Drenckhahn D (1984) Induction of human vascular endothelial stress fibres by fluid shear stress. Nature 307:648–649

    Google Scholar 

  53. Friedman MH, Bargeron CB, Deters OJ, Hutchins GM, Mark FF (1987) Correlation between wall shear and intimal thickness at a coronary artery branch. Atherosclerosis 68:27–33

    Google Scholar 

  54. Friedman MH, Brinkman AM, Qin JJ, Seed WA (1993) Relation between coronary artery geometry and the distribution of early sudanophilic lesions. Atherosclerosis 98:193–199

    Google Scholar 

  55. Fung YC (1997) Biomechanics: Circulation. New York, NY: Springer

    Google Scholar 

  56. Gabriels JE, Paul DL (1998) Connexin43 is highly localized to sites of disturbed flow in rat aortic endothelium but connexin37 and connexin40 are more uniformly distributed. Circ Res 83:636–643

    Google Scholar 

  57. Galbraith CG, Skalak R, Chien S (1998) Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil Cytoskeleton 40:317–330

    Google Scholar 

  58. Galis ZS, Khatri JJ (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 90:251–262

    Google Scholar 

  59. Garcia-Cardena G, Comander J, Anderson KR, Blackman BR, Gimbrone MA Jr (2001) Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci USA 98:4478–4485

    Google Scholar 

  60. Gibson CM, Diaz L, Kandarpa K, Sacks FM, Pasternak RC, Sandor T, Feldman C, Stone PH (1993) Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries. Arterioscler Thromb 13:310–315

    Google Scholar 

  61. Gimbrone MA Jr, Nagel T, Topper JN (1997) Biomechanical activation: an emerging paradigm in endothelial adhesion biology. J Clin Invest 99:1809–1813

    Google Scholar 

  62. Gimbrone MA, Jr, Topper JN, Nagel T, Anderson KR, Garcia-Cardena G (2000) Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci 902:230–239; discussion 239–240

    Google Scholar 

  63. Glagov S, Zarins C, Giddens DP, Ku DN (1988) Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med 112:1018–1031

    Google Scholar 

  64. Gnasso A, Carallo C, Irace C, Spagnuolo V, De Novara G, Mattioli PL, Pujia A (1996) Association between intima-media thickness and wall shear stress in common carotid arteries in healthy male subjects. Circulation 94:3257–3262

    Google Scholar 

  65. Gnasso A, Irace C, Carallo C, De Franceschi MS, Motti C, Mattioli PL, Pujia A (1997) In vivo association between low wall shear stress and plaque in subjects with asymmetrical carotid atherosclerosis. Stroke 28:993–998

    Google Scholar 

  66. Helmke BP, Goldman RD, Davies PF (2000) Rapid displacement of vimentin intermediate filaments in living endothelial cells exposed to flow. Circ Res 86:745–752

    Google Scholar 

  67. Himburg HA, Grzybowski DM, Hazel AL, LaMack JA, Li XM, Friedman MH (2004) Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am J Physiol Heart Circ Physiol 286:H1916–H1922

    Google Scholar 

  68. Hinds MT, Park YJ, Jones SA, Giddens DP, Alevriadou BR (2001) Local hemodynamics affect monocytic cell adhesion to a three-dimensional flow model coated with E-selectin. J Biomech 34:95–103

    Google Scholar 

  69. Hishikawa K, Nakaki T, Marumo T, Suzuki H, Kato R, Saruta T (1995) Pressure enhances endothelin-1 release from cultured human endothelial cells. Hypertension 25:449–452

    Google Scholar 

  70. Hsieh HJ, Li NQ, Frangos JA (1991) Shear stress increases endothelial platelet-derived growth factor mRNA levels. Am J Physiol 260:H642–H646

    Google Scholar 

  71. Hsu PP, Li S, Li YS, Usami S, Ratcliffe A, Wang X, Chien S (2001) Effects of flow patterns on endothelial cell migration into a zone of mechanical denudation. Biochem Biophys Res Commun 285:751–759

    Google Scholar 

  72. Hu YL, Li S, Miao H, Tsou TC, del Pozo MA, Chien S (2002) Roles of microtubule dynamics and small GTPase Rac in endothelial cell migration and lamellipodium formation under flow. J Vasc Res 39:465–476

    Google Scholar 

  73. Huang AL, Jan KM, Chien S (1992) Role of intercellular junctions in the passage of horseradish peroxidase across aortic endothelium. Lab Invest 67:201–209

    Google Scholar 

  74. Hutchison KJ (1991) Endothelial cell morphology around graded stenoses of the dog common carotid artery. Blood Vessels 28:396–406

    Google Scholar 

  75. Ives CL, Eskin SG, McIntire LV (1986) Mechanical effects on endothelial cell morphology: in vitro assessment. In Vitro Cell Dev Biol 22:500–507

    Google Scholar 

  76. Jou LD, van Tyen R, Berger SA, Saloner D (1996) Calculation of the magnetization distribution for fluid flow in curved vessels. Magn Reson Med 35:577–584

    Google Scholar 

  77. Kamiya A, Bukhari R, Togawa T (1984) Adaptive regulation of wall shear stress optimizing vascular tree function. Bull Math Biol 46:127–137

    Google Scholar 

  78. Karino T, Goldsmith HL (1979) Adhesion of human platelets to collagen on the walls distal to a tubular expansion. Microvasc Res 17:238–262

    Google Scholar 

  79. Khachigian LM, Resnick N, Gimbrone MA Jr, Collins T (1995) Nuclear factor-kappa B interacts functionally with the platelet-derived growth factor B-chain shear-stress response element in vascular endothelial cells exposed to fluid shear stress. J Clin Invest 96:1169–1175

    Google Scholar 

  80. Kim DW, Langille BL, Wong MK, Gotlieb AI (1989) Patterns of endothelial microfilament distribution in the rabbit aorta in situ. Circ Res 64:21–31

    Google Scholar 

  81. Kinlay S, Ganz P (1997) Role of endothelial dysfunction in coronary artery disease and implications for therapy. Am J Cardiol 80:11I-16I

    Google Scholar 

  82. Kolpakov V, Polishchuk R, Bannykh S, Rekhter M, Solovjev P, Romanov Y, Tararak E, Antonov A, Mironov A (1996) Atherosclerosis-prone branch regions in human aorta: microarchitecture and cell composition of intima. Atherosclerosis 122:173–189

    Google Scholar 

  83. Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293–302

    Google Scholar 

  84. Kwak BR, Mulhaupt F, Veillard N, Gros DB, Mach F (2002) Altered pattern of vascular connexin expression in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 22:225–230

    Google Scholar 

  85. LaBarbera M (1990) Principles of design of fluid transport systems in zoology. Science 249:992–1000

    Google Scholar 

  86. Langille BL, Graham JJ, Kim D, Gotlieb AI (1991) Dynamics of shear-induced redistribution of F-actin in endothelial cells in vivo. Arterioscler Thromb 11:1814–1820

    Google Scholar 

  87. Lee TY, Gotlieb AI (2003) Microfilaments and microtubules maintain endothelial integrity. Microsc Res Tech 60:115–127

    Google Scholar 

  88. Lerman A, Burnett JC Jr (1992) Intact and altered endothelium in regulation of vasomotion. Circulation 86:III12–III19

    Google Scholar 

  89. Levesque MJ, Nerem RM (1985) The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng 107:341–347

    Google Scholar 

  90. Levesque MJ, Nerem RM, Sprague EA (1990) Vascular endothelial cell proliferation in culture and the influence of flow. Biomaterials 11:702–707

    Google Scholar 

  91. Li S, Butler P, Wang Y, Hu Y, Han DC, Usami S, Guan JL, Chien S (2002) The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc Natl Acad Sci USA 99:3546–3551

    Google Scholar 

  92. Li S, Kim M, Hu YL, Jalali S, Schlaepfer DD, Hunter T, Chien S, Shyy JY (1997) Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. J Biol Chem 272:30455–30462

    Google Scholar 

  93. Li YS, Haga JH, Chien S (2005) Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 38:1949–1971

    Google Scholar 

  94. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Google Scholar 

  95. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143

    Google Scholar 

  96. Lin K, Hsu PP, Chen BP, Yuan S, Usami S, Shyy JY, Li YS, Chien S (2000) Molecular mechanism of endothelial growth arrest by laminar shear stress. Proc Natl Acad Sci USA 97:9385–9389

    Google Scholar 

  97. Lin SJ, Jan KM, Weinbaum S, Chien S (1989) Transendothelial transport of low density lipoprotein in association with cell mitosis in rat aorta. Arteriosclerosis 9:230–236

    Google Scholar 

  98. Liu Y, Chen BP, Lu M, Zhu Y, Stemerman MB, Chien S, Shyy JY (2002) Shear stress activation of SREBP1 in endothelial cells is mediated by integrins. Arterioscler Thromb Vasc Biol 22:76–81

    Google Scholar 

  99. Lusis AJ (2000) Atherosclerosis. Nature 407:233–241

    Google Scholar 

  100. Macagno EQ, Hung TK (1967) Computational and experimental study of a captive annular eddy. J Fluid Mech 28:43–64

    Google Scholar 

  101. Macagno EQ, Hung TK (1970) Computational study of accelerated flow in a two-dimensional conduit expansion. J Hydraulic Res 8:41–64

    Google Scholar 

  102. Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042

    Google Scholar 

  103. McCormick SM, Eskin SG, McIntire LV, Teng CL, Lu CM, Russell CG, Chittur KK (2001) DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Natl Acad Sci USA 98:8955–8960

    Google Scholar 

  104. McLenachan JM, Vita J, Fish DR, Treasure CB, Cox DA, Ganz P, Selwyn AP (1990) Early evidence of endothelial vasodilator dysfunction at coronary branch points. Circulation 82:1169–1173

    Google Scholar 

  105. Miao H, Hu YL, Shiu YT, Yuan S, Zhao Y, Kaunas R, Wang Y, Jin G, Usami S, Chien S (2005) Effects of flow patterns on the localization and expression of VE-cadherin at vascular endothelial cell junctions: in vivo and in vitro investigations. J Vasc Res 42:77–89

    Google Scholar 

  106. Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, Akira S, Rajavashisth TB, Arditi M (2004) Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci USA 101:10679–10684

    Google Scholar 

  107. Motomiya M, Karino T (1984) Flow patterns in the human carotid artery bifurcation. Stroke 15:50–56

    Google Scholar 

  108. Nagel T, Resnick N, Atkinson WJ, Dewey CF Jr, Gimbrone MA Jr (1994) Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J Clin Invest 94:885–891

    Google Scholar 

  109. Nagel T, Resnick N, Dewey CF Jr, Gimbrone MA Jr (1999) Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler Thromb Vasc Biol 19:1825–1834

    Google Scholar 

  110. Nerem RM (1992) Vascular fluid mechanics, the arterial wall, and atherosclerosis. J Biomech Eng 114:274–282

    Google Scholar 

  111. Nerem RM, Alexander RW, Chappell DC, Medford RM, Varner SE, Taylor WR (1998) The study of the influence of flow on vascular endothelial biology. Am J Med Sci 316:169–175

    Google Scholar 

  112. Nerem RM, Levesque MJ, Cornhill JF (1981) Vascular endothelial morphology as an indicator of the pattern of blood flow. J Biomech Eng 103:172–176

    Article  Google Scholar 

  113. Oemar BS, Werner A, Garnier JM, Do DD, Godoy N, Nauck M, Marz W, Rupp J, Pech M, Luscher TF (1997) Human connective tissue growth factor is expressed in advanced atherosclerotic lesions. Circulation 95:831–839

    Google Scholar 

  114. Oshinski JN, Ku DN, Mukundan S Jr, Loth F, Pettigrew RI (1995) Determination of wall shear stress in the aorta with the use of MR phase velocity mapping. J Magn Reson Imaging 5:640–647

    Google Scholar 

  115. Oyre S, Pedersen EM, Ringgaard S, Boesiger P, Paaske WP (1997) In vivo wall shear stress measured by magnetic resonance velocity mapping in the normal human abdominal aorta. Eur J Vasc Endovasc Surg 13:263–271

    Google Scholar 

  116. Packham N, Sheil AG, Loewenthal J (1967) Aortic aneurysms: a review with reports of 62 cases. Med J Aust 2:833–836

    Google Scholar 

  117. Passerini AG, Polacek DC, Shi C, Francesco NM, Manduchi E, Grant GR, Pritchard WF, Powell S, Chang GY, Stoeckert CJ Jr, Davies PF (2004) Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc Natl Acad Sci USA 101:2482–2487

    Google Scholar 

  118. Pedersen EM, Agerbaek M, Kristensen IB, Yoganathan AP (1997) Wall shear stress and early atherosclerotic lesions in the abdominal aorta in young adults. Eur J Vasc Endovasc Surg 13:443–451

    Google Scholar 

  119. Phelps JE, DePaola N (2000) Spatial variations in endothelial barrier function in disturbed flows in vitro. Am J Physiol Heart Circ Physiol 278:H469–H476

    Google Scholar 

  120. Porat RM, Grunewald M, Globerman A, Itin A, Barshtein G, Alhonen L, Alitalo K, Keshet E (2004) Specific induction of tie1 promoter by disturbed flow in atherosclerosis-prone vascular niches and flow-obstructing pathologies. Circ Res 94:394–401

    Google Scholar 

  121. Pritchard WF, Davies PF, Derafshi Z, Polacek DC, Tsao R, Dull RO, Jones SA, Giddens DP (1995) Effects of wall shear stress and fluid recirculation on the localization of circulating monocytes in a three-dimensional flow model. J Biomech 28:1459–1469

    Google Scholar 

  122. Resnick N, Collins T, Atkinson W, Bonthron DT, Dewey CF Jr., Gimbrone MA Jr (1993) Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element. Proc Natl Acad Sci USA 90:4591–4595

    Google Scholar 

  123. Resnick N, Gimbrone MA Jr (1995) Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J 9:874–882

    Google Scholar 

  124. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the (1990s) Nature 362:801–809

    Google Scholar 

  125. Ross R (1999) Atherosclerosis-an inflammatory disease. N Engl J Med 340:115–126

    Google Scholar 

  126. Sampath R, Kukielka GL, Smith CW, Eskin SG, McIntire LV (1995) Shear stress-mediated changes in the expression of leukocyte adhesion receptors on human umbilical vein endothelial cells in vitro. Ann Biomed Eng 23:247–256

    Google Scholar 

  127. Sawchuk AP, Unthank JL, Davis TE, Dalsing MC (1994) A prospective, in vivo study of the relationship between blood flow hemodynamics and atherosclerosis in a hyperlipidemic swine model. J Vasc Surg 19:58–63; discussion 63–54

    Google Scholar 

  128. Schwenke DC, Carew TE (1988) Quantification in vivo of increased LDL content and rate of LDL degradation in normal rabbit aorta occurring at sites susceptible to early atherosclerotic lesions. Circ Res 62:699–710

    Google Scholar 

  129. Schwenke DC, Carew TE (1989) Initiation of atherosclerotic lesions in cholesterol-fed rabbits. I. Focal increases in arterial LDL concentration precede development of fatty streak lesions. Arteriosclerosis 9:895–907

    Google Scholar 

  130. SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A, Feinberg MW, Chen Z, Simon DI, Luscinskas FW, Michel TM, Gimbrone M.A. Jr, Garcia-Cardena G, Jain MK (2004) KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 199:1305–1315

    Google Scholar 

  131. Shyy YJ, Hsieh HJ, Usami S, Chien S (1994) Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc Natl Acad Sci USA 91:4678–4682

    Google Scholar 

  132. Shyy JY, Lin MC, Han J, Lu Y, Petrime M, Chien S (1995) The cis-acting phorbol ester “12-O-tetradecanoylphorbol 13-acetate”-responsive element is involved in shear stress-induced monocyte chemotactic protein 1 gene expression. Proc Natl Acad Sci USA 92:8069–8073

    Google Scholar 

  133. Skilbeck C, Westwood SM, Walker PG, David T, Nash GB (2001) Dependence of adhesive behavior of neutrophils on local fluid dynamics in a region with recirculating flow. Biorheology 38:213–227

    Google Scholar 

  134. Sprague EA, Luo J, Palmaz JC (1997) Human aortic endothelial cell migration onto stent surfaces under static and flow conditions. J Vasc Interv Radiol 8:83–92

    Google Scholar 

  135. Stemerman MB, Morrel EM, Burke KR, Colton CK, Smith KA, Lees RS (1986) Local variation in arterial wall permeability to low density lipoprotein in normal rabbit aorta. Arteriosclerosis 6:64–69

    Google Scholar 

  136. Stenina OI, Krukovets I, Wang K, Zhou Z, Forudi F, Penn MS, Topol EJ, Plow EF (2003) Increased expression of thrombospondin-1 in vessel wall of diabetic Zucker rat. Circulation 107:3209–3215

    Google Scholar 

  137. Tardy Y, Resnick N, Nagel T, Gimbrone MA Jr, Dewey CF Jr (1997) Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler Thromb Vasc Biol 17:3102–3106

    Google Scholar 

  138. Topper JN, Gimbrone MA Jr (1999) Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Mol Med Today 5:40–46

    Google Scholar 

  139. Traub O, Berk BC (1998) Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol 18:677–685

    Google Scholar 

  140. Truskey GA, Barber KM, Robey TC, Olivier LA, Combs MP (1995) Characterization of a sudden expansion flow chamber to study the response of endothelium to flow recirculation. J Biomech Eng 117:203–210

    Google Scholar 

  141. Tsuboi H, Ando J, Korenaga R, Takada Y, Kamiya A (1995) Flow stimulates ICAM-1 expression time and shear stress dependently in cultured human endothelial cells. Biochem Biophys Res Commun 206:988–996

    Google Scholar 

  142. Usami S, Chen HH, Zhao Y, Chien S, Skalak R (1993) Design and construction of a linear shear stress flow chamber. Ann Biomed Eng 21:77–83

    Google Scholar 

  143. van Haperen R, Cheng C, Mees BM, van Deel E, de Waard M, van Damme LC, van Gent T, van Aken T, Krams R, Duncker DJ, de Crom R (2003) Functional expression of endothelial nitric oxide synthase fused to green fluorescent protein in transgenic mice. Am J Pathol 163:1677–1686

    Google Scholar 

  144. VanderLaan PA, Reardon CA, Getz GS (2004) Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol 24:12–22

    Google Scholar 

  145. Vyalov S, Langille BL, Gotlieb AI (1996) Decreased blood flow rate disrupts endothelial repair in vivo. Am J Pathol 149:2107–2118

    Google Scholar 

  146. Wang N, Miao H, Li YS, Zhang P, Haga JH, Hu Y, Young A, Yuan S, Nguyen P, Wu CC, Chien S (2006) Shear stress regulation of Kruppel-like factor 2 expression is flow pattern-specific. Biochem Biophys Res Commun 341:1244–1251

    Google Scholar 

  147. Wasserman SM, Mehraban F, Komuves LG, Yang RB, Tomlinson JE, Zhang Y, Spriggs F, Topper JN (2002) Gene expression profile of human endothelial cells exposed to sustained fluid shear stress. Physiol Genomics 12:13–23

    Google Scholar 

  148. Weinbaum S, Tzeghai G, Ganatos P, Pfeffer R, Chien S (1985) Effect of cell turnover and leaky junctions on arterial macromolecular transport. Am J Physiol 248:H945–H960

    Google Scholar 

  149. Weinberg PD (2004) Rate-limiting steps in the development of atherosclerosis: the response-to-influx theory. J Vasc Res 41:1–17

    Google Scholar 

  150. Wissler RW (1995) An overview of the quantitative influence of several risk factors on progression of atherosclerosis in young people in the United States. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Am J Med Sci 310(1):S29–S36

    Google Scholar 

  151. Wojciak-Stothard B, Ridley AJ (2003) Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. J Cell Biol 161:429–439

    Google Scholar 

  152. Wu MH, Kouchi Y, Onuki Y, Shi Q, Yoshida H, Kaplan S, Viggers RF, Ghali R, Sauvage LR (1995) Effect of differential shear stress on platelet aggregation, surface thrombosis, and endothelialization of bilateral carotid-femoral grafts in the dog. J Vasc Surg 22:382–390; discussion 390–382

    Google Scholar 

  153. Zamir M (1976) The role of shear forces in arterial branching. J Gen Physiol 67:213–222

    Google Scholar 

  154. Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S (1983) Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53:502–514

    Google Scholar 

  155. Zarins CK, Zatina MA, Giddens DP, Ku DN, Glagov S (1987) Shear stress regulation of artery lumen diameter in experimental atherogenesis. J Vasc Surg 5:413–420

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chiu, JJ., Usami, S., Chien, S. (2008). Vascular Endothelial Responses to Disturbed Flow: Pathologic Implications for Atherosclerosis. In: Artmann, G., Chien, S. (eds) Bioengineering in Cell and Tissue Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75409-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75409-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75408-4

  • Online ISBN: 978-3-540-75409-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics