Skip to main content

Learning Rule Sets

  • Chapter
  • First Online:
Book cover Foundations of Rule Learning

Part of the book series: Cognitive Technologies ((COGTECH))

Abstract

The main shortcoming of algorithms for learning a single rule is the lack of expressiveness of a single conjunctive rule. In this chapter we present approaches that construct sets of rules. These sets can be constructed by iterative usage of the algorithms for constructing single rules presented in Chap. 6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One may say that Precision assumes a different cost model for each point in the space, depending on the relative frequencies of the covered positive and negative examples. Such local changes of cost models are investigated in more detail by Flach (2003).

References

  • Azevedo, P. J., & Jorge, A. J. (2010). Ensembles of jittered association rule classifiers. Data Mining and Knowledge Discovery, 12(5), 421–453. Special Issue on Global Modeling using Local Patterns.

    Google Scholar 

  • Badea, L. (2001). A refinement operator for theories. In C. Rouveirol, & M. Sebag (Eds.), Proceedings of the 11th International Conference on Inductive Logic Programming (ILP-01), Strasbourg, France (pp. 1–14). Berlin, Germany/New York: Springer.

    Google Scholar 

  • Bayardo, R. J., Jr. (1997). Brute-force mining of high-confidence classification rules. In Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD-97) (pp. 123–126). Menlo Park, CA: AAAI.

    Google Scholar 

  • Bratko, I. (1999). Refining complete hypotheses in ILP. In S. Džeroski & P. Flach (Eds.), Proceedings of the 9th International Workshop on Inductive Logic Programming (ILP-99), Bled, Slovenia (pp. 44–55). Berlin, Germany/New York: Springer.

    Google Scholar 

  • Bringmann, B., Nijssen, S., & Zimmermann, A. (2009). Pattern-based classification: A unifying perspective. In A. Knobbe & J. Fürnkranz (Eds.), From Local Patterns to Global Models: Proceedings of the ECML/PKDD-09 Workshop (LeGo-09), Bled, Slovenia (pp. 36–50).

    Google Scholar 

  • Cohen, W. W., & Singer, Y. (1999). A simple, fast, and effective rule learner. In Proceedings of the 16th National Conference on Artificial Intelligence (AAAI-99) (pp. 335–342). Menlo Park, CA: AAAI/MIT.

    Google Scholar 

  • Dembczyński, K., Kotłowski, W., & Słowiński, R. (2010). ENDER – A statistical framework for boosting decision rules. Data Mining and Knowledge Discovery, 12(5), 385–420. Special Issue on Global Modeling using Local Patterns.

    Google Scholar 

  • De Raedt, L. (1996). Induction in logic. In R. Michalski & J. Wnek (Eds.), Proceedings of the 3rd International Workshop on Multistrategy Learning (MSL-96) (pp. 29–38). Fairfax, VA: Machine Learning and Inference Laboratory, George Mason University.

    Google Scholar 

  • De Raedt, L., & Dehaspe, L. (1997). Clausal discovery. Machine Learning, 26(2/3), 99–146. Special Issue on Inductive Logic Programming.

    Google Scholar 

  • De Raedt, L., & Van Laer, W. (1995). Inductive constraint logic. In K. Jantke, T. Shinohara, & Zeugmann, T. (Eds.), Proceedings of the 5th Workshop on Algorithmic Learning Theory (ALT-95), Fukuoka, Japan (pp. 80–94). Berlin, Germany/New York: Springer.

    Google Scholar 

  • Dietterich, T. G. (2000). Ensemble methods in machine learning. In J. Kittler & F. Roli (Eds.), Proceedings of the 1st International Workshop on Multiple Classifier Systems, Cagliari, Italy (pp. 1–15). Berlin, Germany/New York: Springer.

    Google Scholar 

  • Domingos, P. (1996a). Linear-time rule induction. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96) pp. 96–101. Menlo Park, CA: AAAI.

    Google Scholar 

  • Domingos, P. (1996b). Unifying instance-based and rule-based induction. Machine Learning, 24, 141–168.

    Google Scholar 

  • Esposito, F., Semeraro, G., Fanizzi, N., & Ferilli, S. (2000). Multistrategy theory revision: Induction and abduction in INTHELEX. Machine Learning, 38(1–2), 133–156.

    Article  MATH  Google Scholar 

  • Flach, P. (1997). Normal forms for inductive logic programming. In N. Lavrač & S. Džeroski (Eds.), Proceedings of the 7th International Workshop on Inductive Logic Programming (ILP-97), Prague, Czech Republic (pp. 149–156). Berlin, Germany/New York: Springer.

    Google Scholar 

  • Flach, P. (2003). The geometry of ROC space: Using ROC isometrics to understand machine learning metrics. In T. Fawcett & N. Mishra (Eds.), Proceedings of the 20th International Conference on Machine Learning (ICML-03), Washington, DC (pp. 194–201). Menlo Park, CA: AAAI.

    Google Scholar 

  • Frank, E., & Witten, I. H. (1998). Generating accurate rule sets without global optimization. In J. Shavlik (Ed.), Proceedings of the 15th International Conference on Machine Learning (ICML-98), Madison, WI (pp. 144–151). San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Friedman, A. (1986). Fundamentals of logic design and switching theory. Rockville, MD: Computer Science Press.

    Google Scholar 

  • Fürnkranz, J. (2005). From local to global patterns: Evaluation issues in rule learning algorithms. In K. Morik, J.-F. Boulicaut, & A. Siebes (Eds.), Local pattern detection (pp. 20–38). Berlin, Germany/New York: Springer.

    Chapter  Google Scholar 

  • Fürnkranz, J., & Knobbe, A. (2010). Special issue on global modeling using local patterns. Data Mining and Knowledge Discovery, 21(1), 1–8.

    Article  MathSciNet  Google Scholar 

  • Gamberger, D., & Lavrač, N. (2000). Confirmation rule sets. In D. A. Zighed, J. Komorowski, & J. Žytkow (Eds.), Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD-00), Lyon, France (pp. 34–43). Berlin, Germany: Springer.

    Google Scholar 

  • Gamberger, D., & Lavrač, N. (2002). Expert-guided subgroup discovery: Methodology and application. Journal of Artificial Intelligence Research, 17, 501–527.

    MATH  Google Scholar 

  • Hand, D. J. (2002). Pattern detection and discovery. In D. J. Hand, N. M. Adams, & R. J. Bolton (Eds.), Pattern Detection and Discovery: Proceedings of the ESF Exploratory Workshop, London (pp. 1–12). Berlin, Germany/New York: Springer.

    Google Scholar 

  • Hoos, H. H., & Stützle, T. (2004). Stochastic local search: Foundations and applications. San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Jovanoski, V., & Lavrač, N. (2001). Classification rule learning with APRIORI-C. In P. Brazdil & A. Jorge (Eds.), Proceedings of the 10th Portuguese Conference on Artificial Intelligence (EPIA 2001), Porto, Portugal (pp. 44–51). Berlin, Germany/New York: Springer.

    Google Scholar 

  • Knobbe, A. J., Crémilleux, B., Fürnkranz, J., & Scholz, M. (2008). From local patterns to global models: The LeGo approach to data mining. In J. Fürnkranz & A. J. Knobbe (Eds.), From Local Patterns to Global Models: Proceedings of the ECML/PKDD-08 Workshop (LeGo-08), Antwerp, Belgium (pp. 1–16).

    Google Scholar 

  • Lavrač, N., Kavšek, B., Flach, P., & Todorovski, L. (2004). Subgroup discovery with CN2-SD. Journal of Machine Learning Research, 5, 153–188.

    Google Scholar 

  • Li, W., Han, J., & Pei, J. (2001). CMAR: Accurate and efficient classification based on multiple class-association rules. In Proceedings of the IEEE Conference on Data Mining (ICDM-01), San Jose, CA (pp. 369–376). Los Alamitos, CA: IEEE.

    Google Scholar 

  • Liu, B., Hsu, W., & Ma, Y. (1998). Integrating classification and association rule mining. In R. Agrawal, P. Stolorz, & G. Piatetsky-Shapiro (Eds.), Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining (KDD-98) (pp. 80–86). Menlo Park, CA: AAAI.

    Google Scholar 

  • Liu, B., Ma, Y., & Wong, C.-K. (2000). Improving an exhaustive search based rule learner. In D. A. Zighed, H. J. Komorowski, & J. M. Zytkow (Eds.), Proceedings of the 4th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD-2000), Lyon, France (pp. 504–509). Berlin, Germany: Springer.

    Google Scholar 

  • Mooney, R. J. (1995). Encouraging experimental results on learning CNF. Machine Learning, 19, 79–92.

    Google Scholar 

  • Morik, K., Boulicaut, J.-F., & Siebes, A. (Eds.). (2005). Local pattern detection. Berlin, Germany/New York: Springer.

    Google Scholar 

  • Mutter, S., Hall, M., & Frank, E. (2004). Using classification to evaluate the output of confidence-based association rule mining. In G. I. Webb & X. Yu (Eds.), Proceedings of the Australian Joint Conference on Artificial Intelligence (AI-04), Cairns, QLD (pp. 538–549). Berlin, Germany: Springer.

    Google Scholar 

  • Pfahringer, B., Holmes, G., & Wang, C. (2005). Millions of random rules. In J. Fürnkranz (Ed.), Proceedings of the ECML/PKDD Workshop on Advances in Inductive Rule Learning, Pisa, Italy.

    Google Scholar 

  • Quinlan, J. R. (1987a). Generating production rules from decision trees. In Proceedings of the 10th International Joint Conference on Artificial Intelligence (IJCAI-87) (pp. 304–307). Los Altos, CA: Morgan Kaufmann.

    Google Scholar 

  • Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Rijnbeek, P. R., & Kors, J. A. (2010). Finding a short and accurate decision rule in disjunctive normal form by exhaustive search. Machine Learning, 80(1), 33–62.

    Article  Google Scholar 

  • Rückert, U., & De Raedt, L. (2008). An experimental evaluation of simplicity in rule learning. Artificial Intelligence, 172(1), 19–28.

    Article  MATH  Google Scholar 

  • Rückert, U., & Kramer, S. (2003). Stochastic local search in k-term DNF learning. In T. Fawcett & N. Mishra (Eds.), Proceedings of the 20th International Conference on Machine Learning (ICML-03), Washington, DC (pp. 648–655). Menlo Park, CA: AAAI.

    Google Scholar 

  • Salzberg, S. (1991). A nearest hyperrectangle learning method. Machine Learning, 6, 251–276.

    Google Scholar 

  • Scheffer, T., & Wrobel, S. (2002). Finding the most interesting patterns in a database quickly by using sequential sampling. Journal of Machine Learning Research, 3, 833–862.

    MathSciNet  Google Scholar 

  • Smyth, P., & Goodman, R. M. (1991). Rule induction using information theory. In G. Piatetsky-Shapiro & W. J. Frawley (Eds.), Knowledge discovery in databases (pp. 159–176). London: MIT.

    Google Scholar 

  • Sulzmann, J.-N., & Fürnkranz, J. (2008). A comparison of techniques for selecting and combining class association rules. In J. Fürnkranz & A. J. Knobbe (Eds.), From Local Patterns to Global Models: Proceedings of the ECML/PKDD-08 Workshop (LeGo-08), Antwerp, Belgium (pp. 154–168).

    Google Scholar 

  • Weiss, S. M., & Indurkhya, N. (2000). Lightweight rule induction. In P. Langley (Ed.), Proceedings of the 17th International Conference on Machine Learning (ICML-2000), Stanford, CA (pp. 1135–1142). San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Widmer, G. (2003). Discovering simple rules in complex data: A meta-learning algorithm and some surprising musical discoveries. Artificial Intelligence, 146(2), 129–148.

    Article  MathSciNet  MATH  Google Scholar 

  • Wrobel, S. (1996). First order theory refinement. In L. De Raedt (Ed.), Advances in inductive logic programming (pp. 14–33). Amsterdam: IOS Press.

    Google Scholar 

  • Yin, X., & Han, J. (2003). CPAR: Classification based on predictive association rules. In D. Barbará & C. Kamath (Eds.) Proceedings of the SIAM Conference on Data Mining (SDM-03) (pp. 331–335). Philadelphia: SIAM.

    Google Scholar 

  • Zelle, J. M., Mooney, R. J., & Konvisser, J. B. (1994). Combining top-down and bottom-up techniques in inductive logic programming. In W. Cohen & H. Hirsh (Eds.), Proceedings of the 11th International Conference on Machine Learning (ML-94), New Brunswick, NJ (pp. 343–351). San Francisco: Morgan Kaufmann.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fürnkranz, J., Gamberger, D., Lavrač, N. (2012). Learning Rule Sets. In: Foundations of Rule Learning. Cognitive Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75197-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75197-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75196-0

  • Online ISBN: 978-3-540-75197-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics