Skip to main content

Modeling and Optimizing Positional Accuracy Based on Hyperbolic Geometry for the Adaptive Radio Interferometric Positioning System

  • Conference paper
Book cover Location- and Context-Awareness (LoCA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4718))

Included in the following conference series:

Abstract

One of the most important performance objectives for a localization system is positional accuracy. It is fundamental and essential to general location-aware services. The radio interferometric positioning (RIP) method [1] is an exciting approach which promises sub-meter positional accuracy. In this work, we would like to enhance the RIP method by dynamically selecting the optimal anchor nodes as beacon senders to further optimizing the positional accuracy when tracking targets. We have developed an estimation error model to predict positional error of the RIP algorithm given different combinations of beacon senders. Building upon this estimation error model, we further devise an adaptive RIP method that selects the optimal sender-pair combination (SPC) according to the locations of targets relative to anchor nodes. We have implemented the adaptive RIP method and conducted experiments in a real sensor network testbed. Experimental results have shown that our adaptive RIP method outperforms the static RIP method in both single-target and multi-target tracking, and improves the average positional accuracy by 47%~60% and reduces the 90% percentile error by 55%~61%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maroti, M., Kusy, B., Balogh, G., Volgyesi, P., Nadas, A., Molnar, K., Dora, S., Ledeczi, A.: Radio-interferometric geolocation. In: Proc. 3rd Int’l Conference Conf. Embedded Networked Sensor Systems (SenSys 2005), November 2005, pp. 1–12 (2005)

    Google Scholar 

  2. Kusy, B., Maroti, M., Balogh, G., Volgyesi, P., Sallai, J., Nadas, A., Ledeczi, A., Meertens, L.: Node Density Independent Localization. In: Proc. 5th Int’l Conf. Information Processing in Sensor Networks (IPSN/SPOTS 2006), April 2006, pp. 441–448 (2006)

    Google Scholar 

  3. Kusy, B., Balogh, G., Ledeczi, A., Sallai, J., Maroti, M.: inTrack: High Precision Tracking of Mobile Sensor Nodes. In: Langendoen, K., Voigt, T. (eds.) EWSN 2007. LNCS, vol. 4373, pp. 51–66. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Kusy, B., Sallai, J., Balogh, G., Ledeczi, A., Protopopescu, V., Tolliver, J., DeNap, F., Parang, M.: Radio Interferometric Tracking of Mobile Wireless Nodes. In: Proc. 5th Int’l Conf. Mobile systems, applications and services (MobiSys 2007), June 2007 (2007)

    Google Scholar 

  5. Cong, L., Zhuang, W.: Hybrid TDOA/AOA mobile user location for ideband CDMA cellular systems. IEEE Tran. Wireless Communications 1(3), 439–447 (2002)

    Article  Google Scholar 

  6. Patwari, N.: Relative location estimation in wireless sensor networks. IEEE Tran. Signal processing 51(8), 2137–2148 (2003)

    Article  Google Scholar 

  7. Niculescu, D.: Positioning in ad hoc sensor networks. IEEE Networks 18(4), 24–29 (2004)

    Article  Google Scholar 

  8. Bahl, P., Padmanabhan, V.: An in building RF-based user location and tracking system. In: Proc. Conf. Computer Communications (IEEE Infocom 2000), March 2000, pp. 775–784 (2000)

    Google Scholar 

  9. Lorincz, K., Welsh, M.: Motetrack: A robust, decentralized approach to RF-based location tracking. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, pp. 63–82. Springer, Heidelberg (2005)

    Google Scholar 

  10. Priyantha, N., Charkraborty, A., Balakrishnan, H.: The cricket location support system. In: Proc. 6th Int’l Conf. Mobile Computing and Networking (MOBICOM 2000), August, pp. 32-43 (2000)

    Google Scholar 

  11. 3rd Generation Partnership Project, 3GPP TS 05.05, http://www.3gpp.org/

  12. Römer, K.: The lighthouse location system for smart dust. Proc. 1st Int’l Conf. Mobile systems, applications and services (MobiSys 2003), May 2003, pp. 15-30 (2003)

    Google Scholar 

  13. Stoleru, R., He, T., Stankovic, J.A., Luebke, D.: A high-accuracy, lowcost localization system for wireless sensor networks. In: Proc. 3rd Int’l Conference Conf. Embedded Networked Sensor Systems (SenSys 2005), pp. 13–26 (2005)

    Google Scholar 

  14. He, T., Huang, C., Blum, B.M., Stankovic, J.A., Abdelzaher, T.: Range-Free Localization Schemes in Large-Scale Sensor Networks. In: Proc. 9th annual Int’l Conf. Mobile computing and networking (MOBICOM 2003), pp. 81–95 (September 2003)

    Google Scholar 

  15. Zhou, G., He, T., Stankovic, J.A.: Impact of Radio Irregularity on Wireless Sensor Networks. In: Proc. 2nd Int’l Conf. Mobile systems, applications and services (MobiSys 2004), June 2004, pp. 125–138 (2004)

    Google Scholar 

  16. Girod, L., Lukac, M., Trifa, V., Estrin, D.: The design and implementation of a self-calibrating acoustic sensing platform. In: Proc. 4th Int’l Conference Conf. Embedded Net-worked Sensor Systems (SenSys 2006), October 2006, pp. 71–84 (2006)

    Google Scholar 

  17. Savvides, A., Han, C.C., Srivastava, M.B.: Dynamic Fine-grained Localization in Ad-Hoc Networks of Sensors. In: Proc. 7th annual Int’l Conf. Mobile computing and net-working (MOBICOM 2001), July 2001, pp. 166–179 (2001)

    Google Scholar 

  18. Patwari, N., Hero, A.O., Perkins, I.M., Correal, N.S., O’Dea, R.J.: Relative location estimation in wireless sensor networks. IEEE Tran. Signal Process, Special Issue on Signal Processing in Networking 51(9), 2137–2148 (2003)

    Google Scholar 

  19. Dragos, N., Nath, B.: Ad hoc positioning system (APS) using AoA. In: Dragos, N., Nath, B. (eds.) Proc. Conf. Computer Communications (IEEE Infocom 2003), April 2003, pp. 1734–1743 (2003)

    Google Scholar 

  20. RIPS, http://tinyos.cvs.sourceforge.net/tinyos/tinyos-1.x/contrib/vu/apps/RipsOneHop/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jeffrey Hightower Bernt Schiele Thomas Strang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, Hj., Chang, Hl., You, Cw., Chu, Hh., Huang, P. (2007). Modeling and Optimizing Positional Accuracy Based on Hyperbolic Geometry for the Adaptive Radio Interferometric Positioning System. In: Hightower, J., Schiele, B., Strang, T. (eds) Location- and Context-Awareness. LoCA 2007. Lecture Notes in Computer Science, vol 4718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75160-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75160-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75159-5

  • Online ISBN: 978-3-540-75160-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics